DEPARTMENT OF DEFENSE

JAPAN ENVIRONMENTAL GOVERNING STANDARDS

April 2016

ISSUED BY HEADQUARTERS, U.S. FORCES JAPAN

HEADQUARTERS UNITED STATES FORCES, JAPAN APO AREA PACIFIC 96328-5068

APR 2 1 2016

MEMORANDUM FOR SEE DISTRIBUTION

FROM: HQ USFJ/J00

SUBJECT: 2016 Japan Environmental Governing Standards

1. Attached are the 2016 Japan Environmental Governing Standards (JEGS). Components are directed to implement the 2016 JEGS upon receipt.

2. As environmental law continues to evolve, the JEGS may be amended in the future. The HQ USFJ point of contact concerning JEGS is COL Thomas Verell, USFJ Command Engineer, at DSN 225-4713, or e-mail at <u>thomas.j.verell.mil@mail.mil</u>.

JOHN L. DOLAN Lieutenant General, USAF Commander

Attachment: The 2016 JEGS

cc: USFJ/J03/J06/J09/J021/J5

DISTRIBUTION: USARJ, CNFJ, USAFJ, MARFORJ, USAEDJ, USAPHC-Pacific, DLA-DS-Sagami, and AMEMB/POLMIL

EXECUTIVE SUMMARY

The Under Secretary of Defense for Acquisition, Technology, and Logistics (USD(AT&L)) has appointed COMUSFJ as the DoD Lead Environmental Component (LEC) in Japan. One responsibility of the DoD LEC is to develop and maintain the Final Governing Standards (FGS) for their Area of Responsibility.

The FGS for Japan are known as the Japan Environmental Governing Standards (JEGS). The JEGS were developed in accordance with DoD Instruction 4715.05 ("Environmental Compliance at Installations Outside the United States"), the Status of Forces Agreement, and other applicable international agreements. The JEGS are based upon the format and standards of DoD 4715.05-G, "Overseas Environmental Baseline Guidance Document" (OEBGD). Service Components will need to develop instructions for their own management practices.

The completion of the JEGS was the result of teamwork by USFJ Service Components, installations, and other pertinent organizations within USFJ's Area of Responsibility. The JEGS is the primary source for environmental guidance and standards for US Forces in Japan.

The 2016 JEGS are an update of the 2012 JEGS which were published in December of the same year. The changes were made based on applicable Japanese criteria that was adequately defined and generally in effect and enforced against host government and private sector activities, and that provided greater protection to the environment than described in the OEBGD.

The JEGS does not address environmental contamination or abatement standards, as these issues are fully covered under DoD Instruction 4715.08 ("Remediation of Environmental Contamination outside the United States"). Service Components shall consult the USFJ Command Engineer, on behalf of the DoD LEC, on matters regarding determinations of substantial impact to human health and safety.

Other than as provided in Chapter 8, "Medical Waste Management," the JEGS does not address management or disposal of radioactive waste. These matters are addressed in DoD 4715.6-R ("Low-Level Radioactive Waste Disposal Program") and service component directives.

LIST OF UPDATES/REVALIDATIONS						
CHANGE NUMBER	DATE	POSTED BY				
First Issue	31-Jan-1995	Sunny Sea				
Second Issue	31-May-1996	Sunny Sea				
Third Issue	31-Jan-1997	Sunny Sea				
Fourth Issue	31-Oct-2001	Robert Starks				
Version 1.1	14-Jun-2002	Martin Westman				
Fifth Issue	26-Jul-2004	Justin Lancaster				
Sixth Issue	07-Sep-2006	Justin Lancaster				
Seventh Issue	11-Sep-2008	Hector Jamilli				
Eighth Issue	30-Nov-2010	Joseph Cook				
Ninth Issue	17-Dec-2012	Sean Barron				
Tenth Issue	21-Apr-2016	Sean Barron				

Table of Contents

Executive	Summary	i
Table of C	ontents	iii
C1. Ch	apter 1 – Overview	1
C1.1.	Purpose	1
C1.2.	Applicability	1
C1.3.	Exemptions	1
C1.4.	Definitions	
C1.5.	Additional Information	
C1.6.	Permits and Licenses	
C1.7.	Lead Environmental Component	
C2. Ch	apter 2 – Air Emissions	
C2.1.	Scope	5
C2.2.	Definitions	
C2.3.	Criteria	7
C3. Ch	apter 3 – Drinking Water	
C3.1.	Scope	
C3.2.	Definitions	
C3.3.	Criteria	
C4. Ch	apter 4 – Wastewater	53
C4.1.	Scope	53
C4.2.	Definitions	
C4.3.	Criteria	
C5. Ch	apter 5 – Hazardous Material	
C5.1.	Scope	
C5.2.	Definitions	
C5.3.	Criteria	
C6. Ch	apter 6 – Hazardous Waste	
C6.1.	Scope	
C6.2.	Definitions	
C6.3.	Criteria	

C7.	Cha	pter 7 – Solid Waste	
(C7.1.	Scope	
(C7.2.	Definitions	
(C7.3.	Criteria	
C8.	Cha	pter 8 – Medical Waste Management	
	C8.1.	Scope	
(C8.2.	Definitions	
(C8.3.	Criteria	
C9.	Cha	pter 9 – Petroleum, Oil, and Lubricants	
(C9.1.	Scope	
(C9.2.	Definitions	
	C9.3.	Criteria	
C10). Cha	pter 10 – Reserved	
C11	. Cha	pter 11 – Pesticides	
	C11.1.	Scope	
(C11.2.	Definitions	
(C11.3.	Criteria	
C12	. Cha	pter 12 – Historic and Cultural Resources	
(C12.1.	Scope	
(C12.2.	Definitions	
(C12.3.	Criteria	
C13	. Cha	pter 13 – Natural Resources and Endangered Species	
(C13.1.	Scope	
(C13.2.	Definitions	
(C13.3.	Criteria	
C14	. Cha	pter 14 – Polychlorinated Biphenyls	
(C14.1.	Scope	
(C14.2.	Definitions	
(C14.3.	Criteria	
C15	. Cha	pter 15 – Asbestos	
	C15.1.	Scope	
(C15.2.	Definitions	
(C15.3.	Criteria	

C16.	Chapte	er 16 – Reserved	. 191
C17.	Chapte	er 17 – Lead-Based Paint	. 193
C1	7.1.	Scope	. 193
C1	7.2.	Definitions	. 193
C1	7.3.	Criteria	. 195
C18.	Chapte	er 18 – Spill Prevention and Response Planning	. 197
C1	8.1.	Scope	. 197
C1	8.2.	Definitions	. 197
C1	8.3.	Criteria	. 198
C19.	Chapte	er 19 – Underground Storage Tanks	. 203
C1	9.1.	Scope	. 203
C1	9.2.	Definitions	. 203
C1	9.3.	Criteria	. 204
AP1.	Appen	dix 1	. 207
AP	1.1.	Characteristics of Hazardous Waste	. 207
AP	1.2.	Lists of Hazardous Wastes	. 209
AP2.	Appen	dix 2 – Determination of Worst Case Discharge Planning Volume	. 267

C1. <u>CHAPTER 1</u>

OVERVIEW

C1.1. <u>PURPOSE</u>

C1.1.1. The primary purpose of these Final Governing Standards (FGS) is to provide environmental compliance criteria and management practices to be used by United States (U.S.) Department of Defense (DoD) installations in Japan. This document implements DoD Instruction 4715.05, "Environmental Compliance at Installations Outside the United States," dated 1 November 2013, and is based upon DoD 4715.05-G, "Overseas Environmental Baseline Guidance Document" (OEBGD), dated 1 May 2007.

C1.1.2. These FGS were developed by comparing and adopting the more protective criteria of the OEBGD, applicable Government of Japan (GoJ) national and prefectural environmental laws and regulations, and applicable international agreements. These FGS are consistent with the applicable provisions of Article IV of the "Agreement under Article VI of the Treaty of Mutual Cooperation and Security between the United States of America and Japan, Regarding Facilities and Areas and the Status of United States Armed Forces in Japan," also known as the "Status of Forces Agreement (SOFA) between the United States and Japan."

C1.2. <u>APPLICABILITY</u>

C1.2.1. These JEGS apply to actions of the DoD Components at all installations located within Japan.

C1.2.2. DoD activities and installations may issue supplementary criteria more protective of the environment than required by these FGS, provided they first obtain written concurrence from the DoD Lead Environmental Component. Requests for more protective criteria shall be evaluated based on their potential impact upon other activities and installations, and upon their relationship with GoJ authorities. DoD activities and installations shall clearly identify variances from these FGS in all requests for resources.

C1.2.3. DoD Components shall not enter into agreements with GoJ authorities at any level that establishes a criterion for compliance different than provided in these FGS without the prior written approval of the DoD Lead Environmental Component.

C1.3. EXEMPTIONS. These FGS do not apply to:

C1.3.1. U.S. military vessels, ships, aircraft, or space vehicles.

C1.3.2. Off-installation training.

C1.3.3. Contingency locations and associated operations and deployments, including cases of hostilities, contingency operations in hazardous areas, peacekeeping missions, or relief operations. These include U.S. forces operating as part of a multinational force not under full U.S. control.

C1.3.4. Facilities and activities associated with the Naval Nuclear Propulsion Program, in accordance with Executive Order (E.O.) 12344, and conducted pursuant to section 7158 of Title 42, United States Code.

C1.3.5. Actions to remediate environmental contamination. DoDI 4715.08 generally covers remediation.

C1.3.6. Environmental analyses conducted in accordance with E.O. 12114, "Environmental Effects Abroad of Major Federal Actions."

C1.3.7. DoD installations that do not have the potential to affect the natural environment (e.g., activities that are primarily administrative) or where, in consultation with the Deputy Under Secretary of Defense for Installations and Environment (DUSD(I&E)), the applicable Combatant Commander has determined that no significant force health protection or environmental threats exist.

C1.3.8. Activities, systems, operations and areas on DoD installations for which DoD has no authority or responsibility.

C1.4. <u>DEFINITIONS</u>. For purposes of these FGS, unless otherwise indicated, the following definitions apply:

C1.4.1. <u>Existing Facility</u>. Any facility and/or building, source, or project in use or under construction before 1 October 1994, unless it is subsequently substantially modified.

C1.4.2. <u>New Facility</u>. Any facility and/or building, source, or project with a construction start date on or after 1 October 1994, or a pre-existing facility that has been substantially modified since 1 October 1994.

C1.4.3. <u>Requirements</u>

C1.4.3.1. Particular provisions of U.S. law respecting environmental protection on DoD installations within the U.S.

C1.4.3.2. GoJ laws of general applicability, including those specifically delegated to prefectural or local governments for implementation, respecting environmental protection and which are generally applied to the Japan Self Defense Force (JSDF).

C1.4.3.3. DoD installations overseas shall use these FGS as standards for environmental compliance rather than the individual source documents that have been reconciled by the DoD Lead Environmental Component in the creation of these FGS.

C1.4.4. <u>Substantial Modification</u>. Any modification to a facility and/or building the cost of which exceeds \$1 million, regardless of funding source.

C1.5. ADDITIONAL INFORMATION

C1.5.1. The DoD Components shall establish and implement an environmental audit program to ensure that overseas installations assess compliance with these FGS at least once every 3 years at all major installations.

C1.5.2. DoDI 4715.4, "Pollution Prevention," dated June 18, 1996, implements policy, assigns responsibility, and prescribes procedures for implementation of pollution prevention programs throughout the DoD. As a matter of DoD policy, these FGS should be consulted for particular requirements that apply to activities in Japan. Where economically advantageous and consistent with mission requirements, pollution prevention shall be the preferred means for attaining compliance with these FGS.

C1.5.3. Laboratory analyses necessary to implement these FGS shall normally be conducted in a laboratory certified by a U.S. or GoJ regulatory authority for the applicable test method. In the absence of a certified laboratory, analyses may also be conducted at a laboratory that has an established reliable record of QA compliance with standards for the applicable test method that are generally recognized by appropriate industry or scientific organizations.

C1.5.4. Unless otherwise specified, all record keeping requirements, including assessments, inspection records, logs, manifests, notices, forms, and formats, are described in accordance with paragraph C4.4.2 of DoD 8910.1-M, "DoD Procedures for Management of Information Requirements."

C1.5.5. These FGS do not create any rights or obligations enforceable against the U.S., the DoD, or any of its components, nor does it create any standard of care or practice for individuals. Although these FGS refer to other DoDDs and DoDIs, it is intended only to coordinate the requirements of those directives as required to implement the policies found in DoDI 4715.05. These FGS do not change other DoDDs or DoDIs or alter DoD policies.

C1.5.6. When these FGS were developed, DoD activities and installations were located in the following prefectures or special administrative areas: Aomori, Tokyo, Kanagawa, Saitama, Kyoto, Hiroshima, Shizuoka, Nagasaki, Yamaguchi, and Okinawa. If DoD activities are, or are expected to be, located in any other prefecture, the DoD Lead Environmental Component shall be contacted to determine if any changes in the FGS are warranted for that prefecture.

C1.6. PERMITS AND LICENSES

C1.6.1. In accordance with the SOFA, permits, licenses, or other forms of official approvals are not required by DoD activities and installations. Permits, licenses, or other forms of official approvals may, however, be required under GoJ law for certain contracted activities specified herein. When required, all such permits, licenses and other forms of official approval shall be obtained by the contractor from the appropriate GoJ authorities. DoD Components shall assist contractors when they are applying for a required permit, license or other form of official approval by providing necessary information only.

C1.6.2. If the conditions of any permit, license or other form of official approval provides for a less protective standard than are prescribed in these FGS, these FGS shall remain the

compliance standard unless a waiver is obtained in writing from the DoD Lead Environmental Component.

C1.7. LEAD ENVIRONMENTAL COMPONENT

C1.7.1. In accordance with DoDI 4715.05, the DoD Lead Environmental Component for these FGS is the Commander, U.S. Forces, Japan (COMUSFJ). Service Components shall consult the USFJ Command Engineer, on behalf of the DoD Lead Environmental Component, on matters regarding interpretation or exceptions to these FGS. Any questions or comments pertaining to these FGS shall be sent to:

Commander, U.S. Forces, Japan Unit 5068, Attn: USFJ/Command Engineer APO, AP 96328-5068

DSN Voice (315) 225-4713 DSN FAX (315) 225-4709 Commercial +81 (042) 552-2510, Ext 54713

C2. <u>CHAPTER 2</u>

AIR EMISSIONS

C2.1. <u>SCOPE</u>

This Chapter contains criteria for air emissions sources. Criteria addressing open burning of solid waste are contained in Chapter 7, "Solid Waste." Criteria addressing asbestos are contained in Chapter 15, "Asbestos."

C2.2. <u>DEFINITIONS</u>

C2.2.1. <u>Coal Refuse</u>. Waste products from coal mining, cleaning and coal preparation operations (e.g., culm and gob) containing coal, matrix material, clay, and other organic and inorganic material.

C2.2.2. <u>Cold Cleaning Machine</u>. Any device or piece of equipment that contains and/or uses liquid solvent, into which parts are placed to remove soil and other contaminants from the surfaces of the parts or to dry the parts. Cleaning machines that contain and use heated, nonboiling solvent to clean the parts are classified as cold cleaning machines.

C2.2.3. <u>Commercial and Industrial Solid Waste Incinerator (CISWI) Units</u>. Any combustion device that combusts commercial and industrial waste in an enclosed device using controlled flame combustion without energy recovery that is a distinct operating unit of any commercial or industrial facility (including field-erected, modular, and custom incineration units operating with starved or excess air). CISWI units do NOT include Municipal Waste Combustor Units, Sewage Sludge Incinerators, Medical Waste Incinerators, and Hazardous Waste Combustion Units.

C2.2.4. <u>Diesel Engine Generating Unit</u>. Diesel Engine Generating Units that have a combustion rate \geq 50 liters (13.2 gallons) per hour when calculated in terms of fuel oil consumption.

C2.2.5. <u>Dioxins</u>. Dioxins defined in this chapter are polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-para-dioxins (PCDDs) and coplanar polychlorinated biphenyls (coplanar PCBs).

C2.2.6. Existing Incinerators. Any incinerator constructed on or before 1 December 1997.

C2.2.7. <u>Fossil Fuel</u>. Natural gas, petroleum, coal, and any form of solid, liquid or gaseous fuel derived from such material for the purpose of creating useful heat.

C2.2.8. <u>Freeboard Ratio</u>. The ratio of the solvent cleaning machine freeboard height to the smaller interior dimension (length, width, or diameter) of the solvent cleaning machine.

C2.2.9. <u>Hydrofluorocarbon (HFC)</u>. A compound consisting of hydrogen, fluorine, and carbon often used as a replacement for Ozone-Depletion Substances (ODS).

C2.2.10. <u>Gaseous (Compressed Gas) Engine Generating Unit</u>. Gaseous Engine Generating Units that have the following specifications. The combustion rate of the engine is \geq 35 liters/hour when calculated in terms of fuel oil consumption.

C2.2.11. <u>Gasoline Engine Generating Unit</u>. Gasoline Engine Generating Units that have the following specifications. The combustion rate of the engine is \geq 35 liters/hour when calculated in terms of fuel oil consumption.

C2.2.12. <u>Incinerator</u>. Any furnace used in the process of burning solid or liquid waste for the purpose of reducing the volume of the waste by removing combustible matter, including equipment with heat recovery systems for either hot water or steam generation.

C2.2.13. <u>Motor Vehicle</u>. Any commercially-available vehicle that is not adapted to military use which is self-propelled and designed for transporting persons or property on a street or highway, including but not limited to passenger cars, light duty vehicles, and heavy duty vehicles.

C2.2.14. <u>Municipal Waste Combustion (MWC) Units</u>. Any equipment that combusts solid, liquid, or gasified municipal solid waste (MSW) including, but not limited to, field-erected MWC units (with or without heat recovery), modular MWC units (starved-air or excess-air), boilers (for example, steam generating units), furnaces (whether suspension-fired, grate-fired, mass-fired, air curtain incinerators, or fluidized bed-fired), and pyrolysis/combustion units. Municipal waste combustion units do NOT include pyrolysis or MWC units located at a plastics or rubber recycling unit, cement kilns that combust MSW, internal combustion engines, gas turbines, or other combustion devices that combust landfill gases collected by landfill gas collection systems.

C2.2.15. <u>Municipal Solid Waste (MSW)</u>. Any household, commercial/retail, or institutional waste. Household waste includes material discarded from residential dwellings, hotels, motels, and other similar permanent or temporary housing. Commercial/retail waste includes material discarded by stores, offices, restaurants, warehouses, nonmanufacturing activities at industrial facilities, and other similar establishments or facilities. Institutional waste includes materials discarded by schools, hospitals (nonmedical), nonmanufacturing activities at prisons and government facilities, and other similar establishments or facilities. Household, commercial/retail, and institutional waste does include yard waste and refuse-derived fuel. Household, commercial/retail, and institutional waste does not include used oil; sewage sludge; wood pallets; construction, renovation, and demolition wastes (which include railroad ties and telephone poles); clean wood; industrial process or manufacturing wastes; medical waste; or motor vehicles (including motor vehicle parts or vehicle fluff).

C2.2.16. <u>New Incinerators</u>. Any new Waste or Specified Waste Incinerator built on or after 2 December 1997.

C2.2.17. Ozone-Depleting Substances (ODS). Those substances listed in Table C2.T1.

C2.2.18. <u>Pathological Waste</u>. Waste material consisting of only human or animal remains, anatomical parts, and/or tissue, the bags/containers used to collect and transport the waste material, and animal bedding (if applicable).

C2.2.19. <u>Perfluorocarbon (PFC)</u>. A compound consisting solely of carbon and fluorine often used as a replacement for ODS.

C2.2.20. <u>Process Heater</u>. A device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

C2.2.21. <u>Pyrolysis</u>. The endothermic gasification of hospital waste and/or medical/infectious waste using external energy.

C2.2.22. <u>Specified Waste Incinerator</u>. A waste incinerator with a hearth area $\ge 0.5 \text{ m}^2$ (5.38 ft²) or an incineration rate $\ge 50 \text{ kg/hr}$ (110 lbs/hr).

C2.2.23. Soot and Dust. Particulate matter generated from combustion.

C2.2.24. <u>Stack</u>. Any point in a source covered by criteria contained in C2.3.1.1, C2.3.1.2, C2.3.2 (except paragraph C2.3.2.5), C2.3.3, C2.3.4, or C2.3.5 designed to emit pollutants.

C2.2.25. <u>Steam/Hot Water Generating Unit</u>. A device that combusts any fuel and produces steam or heats water or any other heat transfer medium. This definition does not include nuclear steam generators or process heaters.

C2.2.26. <u>Substantially-Modified</u>. Any modification to a facility/building, the cost of which exceeds \$1 million, regardless of funding source.

C2.2.27. <u>Vapor Cleaning Machine</u>. A batch or in-line solvent cleaning machine that boils liquid solvent which generates solvent vapor that is used as a part of the cleaning or drying cycle.

C2.2.28. <u>Volatile Organic Compound (VOC)</u>. Any organic compound (excluding substances which are not a source for the generation of suspended particulate matter or oxidants) that is emitted into the atmosphere and is in gaseous form at the time when scattered.

C2.2.29. <u>Waste Incinerator</u>. Any incinerator with a grate area $\ge 2 \text{ m}^2 (21.5 \text{ ft}^2)$ or an incineration rate $\ge 200 \text{ kg/hr} (441 \text{ lbs/hr})$, and which burns solid or liquid waste to reduce volume by removing combustible matter, including equipment with heat recovery systems for either hot water or steam generation.

C2.2.30. <u>Wood Residue</u>. Bark, sawdust, slabs, chips, shavings, mill trim, and other wood products derived from wood processing and forest management operations.

C2.3. <u>CRITERIA</u>

C2.3.1. <u>Steam/Hot Water Generating Units</u>. Steam/Hot Water Generating Units with a heating area $\geq 10 \text{ m}^2$ (107.6 ft²), or with a burner combustion rate of ≥ 50 liters (13.2 gallons) per hour when calculated in terms of fuel oil consumption, must comply with the standards provided in Tables C2.T2 (see also paragraph C2.3.10), C2.T3 and C2.T4.

C2.3.1.1. <u>Air Emission Standards</u>. The following criteria apply to units with a maximum design heat input capacity ≥ 10 million BTU/hr that commenced construction on or after 1 October 1994 or that were substantially modified since 1 October 1994.

C2.3.1.1.1. Steam/hot water generating units and associated emissions controls, if applicable, must be designed to meet the emission standards for specific sized units shown in Table C2.T5 at all times, except during periods of start up, shut down, soot blowing, malfunction, or when emergency conditions exist.

C2.3.1.1.2. For units combusting liquid or solid fossil fuels, fuel sulfur content (weight percent) and higher heating value will be measured and recorded for each new shipment of fuel. Use these data to calculate sulfur dioxide (SO₂) emissions and document compliance with the SO₂ limits using the equation in Table C2.T5 (see also paragraph C2.3.10). Alternatively, install a properly calibrated and maintained continuous emissions monitoring system to measure the flue gas for SO₂ and either oxygen (O₂) or carbon dioxide (CO₂).

C2.3.1.2. <u>Air Emissions Monitoring</u>. Steam/hot water generating units that commenced construction on or after 1 October 1994 or that were substantially modified since 1 October 1994 subject to opacity or nitrogen oxides (NO_X) standards in C2.T5 must have a properly calibrated and maintained continuous emissions monitoring system (CEMS) to measure the flue gas as follows:

C2.3.1.2.1. For units with a maximum design heat input capacity >30 million BTU/hr: Opacity, except that CEMS is not required where gaseous or distillate fuels are the only fuels combusted.

C2.3.1.2.2. For fossil fuel fired units with a maximum design heat input capacity >100 million BTU/hr: NO_X and either O_2 or CO_2 .

C2.3.2. <u>Incinerators</u>. The following requirements do not apply to incinerators combusting hazardous waste or munitions. Refer to Chapter 6, "Hazardous Waste," for information regarding hazardous waste disposal and incineration.

C2.3.2.1. <u>Commercial and Industrial Solid Waste Incinerators (CISWI)</u>. All CISWI units must comply with the applicable emission standards in Table C2.T8 and operating limits in Table C2.T9 (see also paragraph C2.3.2.5).

C2.3.2.2. <u>Municipal Waste Combustion (MWC) Units</u>. Each MWC unit must comply with the applicable emission standards in Table C2.T8 and operating limits in Table C2.T9. The temperature of the combustion chamber must be maintained at \geq 800°C (1,472°F), except during periods of start up, shut down, soot blowing, malfunction, or when emergency conditions exist.

C2.3.2.3. <u>Sewage Sludge Incinerators</u>. All sewage sludge incinerators that commenced construction on or after 1 October 1994 or that were substantially modified since 1 October 1994 and that burn more than 1 ton per day (tpd) of sewage sludge or more than 10% sewage sludge, must also be designed to meet a particulate emission limit of 0.65 g/kg dry sludge (1.30 lb/ton dry sludge) and an opacity limit of 20% at all times, except during periods of start up, shut down, malfunction, or when emergency conditions exist.

C2.3.2.4. <u>Medical Waste Incinerators (MWI)</u>. The following standards apply to all units. These requirements do not apply to any portable units (field deployable), pyrolysis units, or units that burn only pathological, low-level radioactive waste, or chemotherapeutic waste. Refer to Chapter 8, "Medical Waste Management," for other requirements pertaining to medical waste management.

C2.3.2.4.1. All MWI must be designed and operated according to the following good combustion practices (GCP):

C2.3.2.4.1.1. Unit design: dual chamber.

C2.3.2.4.1.2. Minimum temperature in primary chamber: 760-871°C (1400-1600°F).

C2.3.2.4.1.3. Minimum temperature in secondary chamber: 982-1204°C (1800-2200°F).

C2.3.2.4.1.4. Minimum residence time in the secondary chamber: 2 seconds.

C2.3.2.4.1.5. Incinerator operators must be trained in accordance with applicable Service requirements.

C2.3.2.5. <u>Additional Air Emission Monitoring for Waste and Specified Waste</u> <u>Incinerators</u>. Waste and Specified Waste Incinerators must be monitored for hazardous air pollutants and dioxins in accordance with the standards in Tables C2.T2, C2.T3, and C2.T6.

C2.3.2.5.1. <u>Hazardous Air Pollutant Monitoring</u>. Installations that operate Waste Incinerators must monitor the hazardous air pollutants listed in Table C2.T2 twice a year.

C2.3.2.5.2. <u>Dioxin Monitoring</u>. Installations that operate Waste or Specified Waste Incinerators must monitor dioxin emissions listed in Table C2.T6 at least annually. Additionally, ash from Waste and Specified Incinerators must be tested at least annually, and must have dioxin levels of 3.0 ng-TEQ/g or less. Ash not meeting this standard must be disposed of as a hazardous waste in accordance with Chapter 6, "Hazardous Waste."

C2.3.3. <u>Perchloroethylene (PCE) Dry Cleaning Machines</u>. The following requirements apply to all dry cleaning machines. These requirements do not apply to coin-operated machines.

C2.3.3.1. Emissions from PCE dry cleaning machines installed before 1 October 1994 that use more than 2,000 gallons per year of PCE (installation wide) in dry cleaning operations, must be controlled with a refrigerated condenser, unless a carbon absorber was already installed. The temperature of the refrigerated condenser must be maintained at \leq 7.22°C (45°F). Dry cleaning machines and control devices must be operated according to manufacturer recommendations.

C2.3.3.2. All PCE dry cleaning systems installed on or after 1 October 1994 must be of the dry-to-dry design with emissions controlled by a refrigerated condenser. The temperature of

the refrigerated condenser must be maintained at \leq 7.22°C (45°F). Dry cleaning machines and control devices must be operated according to manufacturer recommendations.

C2.3.4. <u>Chromium Electroplating and Chromium Anodizing Tanks</u>. Electroplating and anodizing tanks must comply with one of the three methods below for controlling chromium emissions. Implement one of the following methods that is most appropriate to suit local conditions:

C2.3.4.1. <u>Option 1</u>: Limit chromium emissions in the ventilation exhaust to 0.015 milligrams per dry standard cubic meter (mg/dscm). Control devices/methods must be operated according to manufacturer recommendations.

C2.3.4.2. <u>Option 2</u>: Use chemical tank additives to prevent surface tension of the electroplating or anodizing bath from exceeding 45 dynes per centimeter (cm) as measured by a stalagmometer or 35 dynes/cm as measured by a tensiometer. Measure the surface tension prior to the first initiation of electric current on a given day and every 4 hours thereafter.

C2.3.4.3. <u>Option 3</u>: Limit chromium emissions to the maximum allowable mass emission rate (MAMER) calculated using the following equation: MAMER = ETSA x K x 0.015 mg/dscm, where: MAMER = the alternative emission rate for enclosed hard chromium electroplating tanks in mg/hr; ETSA = the hard chromium electroplating tank surface area in square feet (ft²); K = a conversion factor, 425 dscm/(ft²-hr). Option 3 is ONLY applicable to hard chrome electroplating tanks equipped with an enclosing hood and ventilated at half the rate or less than that of an open surface tank of the same surface area.

C2.3.5. <u>Halogenated Solvent Cleaning Machines</u>. These requirements apply to all solvent cleaning machines that use solvent which contains more than 5% by weight: methylene chloride (CAS No. 75-09-2), perchloroethylene (CAS No. 127-18-4), trichloroethylene (CAS No. 79-01-6), 1,1,1-trichloroethane (CAS No. 71-55-6), carbon tetrachloride (CAS No. 56-23-5), chloroform (CAS No. 67-66-3), or any combination of these halogenated solvents.

C2.3.5.1. All cold cleaning machines (remote reservoir and immersion tanks) must be covered when not in use. Additionally, immersion type cold cleaning machines must have either a 1-inch water layer or a freeboard ratio of at least 0.75.

C2.3.5.2. All vapor cleaning machines (vapor degreasers) must incorporate design and work practices which minimize the direct release of halogenated solvent to the atmosphere.

C2.3.6. <u>Units Containing ODS Listed in Table C2.T1, HFCs and PFC</u>. The following criteria apply to direct atmospheric emissions of ODS, HFCs, and perfluorocarbons (PFC) from refrigeration equipment and ODS from fire suppression equipment.

C2.3.6.1. <u>Refrigerant Recovery/Recycling</u>. All repairs, including leak repairs or services to appliances, industrial process refrigeration units, air conditioning units, or motor vehicle air conditioners, must be performed using commercially available refrigerant recovery/recycling equipment operated by trained personnel. Refrigerant technicians shall be trained in proper recovery/recycling procedures, leak detection, safety, shipping, and disposal in accordance with recognized industry standards or Japanese equivalent.

C2.3.6.2. <u>Refrigerant Venting Prohibition</u>. Any class I or class II ODS, HFC, and PFC refrigerant shall not be intentionally released in the course of maintaining, servicing, repairing, or disposing of appliances, industrial process refrigeration units, air conditioning units, or motor vehicle air conditioners. *De minimis* releases associated with good faith attempts to recycle or recover ODS, HFC, and PFC refrigerants are not subject to this prohibition.

C2.3.6.3. <u>Refrigerant Leak Monitoring and Repair</u>. Monitor and repair refrigeration equipment for ODS leakage in accordance with the following criteria and repair, if found to be leaking.

C2.3.6.3.1. <u>Commercial Refrigeration Equipment</u>. Commercial refrigeration equipment normally containing >50 pounds of refrigerant must have leaks repaired if the appliance is leaking at a rate such that the loss of refrigerant will exceed 35% of the total charge during a 12-month period.

C2.3.6.3.2. <u>Industrial Process Refrigeration Equipment</u>. Industrial process refrigeration equipment normally containing >50 pounds of refrigerant must have leaks repaired if the appliance is leaking at a rate such that the loss of refrigerant will exceed 35% of the total charge during a 12-month period.

C2.3.6.3.3. <u>Comfort Cooling Appliances</u>. Comfort cooling appliances normally containing >50 pounds of refrigerant and not covered by paragraphs C2.3.6.3.1 or C2.3.6.3.2 of this chapter must have leaks repaired if the appliance is leaking at a rate such that the loss of refrigerant will exceed 15% of the total charge during a 12-month period.

C2.3.6.4. <u>ODS Fire Suppression Agent (Halon) Venting Prohibition</u>. Halons shall not be intentionally released into the environment while testing, maintaining, servicing, repairing, or disposing of Halon-containing equipment or using such equipment for technician training. This venting prohibition does NOT apply to the following Halon releases:

C2.3.6.4.1. *De minimis* releases associated with good faith attempts to recycle or recover Halons (i.e., release of residual Halon contained in fully discharged total flooding fire extinguishing systems).

C2.3.6.4.2. Emergency releases for the legitimate purpose of fire extinguishing, explosion inertion, or other emergency applications for which the equipment or systems were designed.

C2.3.6.4.3. Releases during the testing of fire extinguishing systems if each of the following is true: systems or equipment employing suitable alternative fire extinguishing agents are not available; release of extinguishing agent is essential to demonstrate equipment functionality; failure of system or equipment would pose great risk to human safety or the environment; and a simulant agent cannot be used.

C2.3.7. <u>Motor Vehicles</u>. This criteria applies to DoD-owned motor vehicles as defined in paragraph C2.2.13.

C2.3.7.1. All vehicles shall be inspected every 2 years to ensure that no tampering with factory-installed emission control equipment has occurred.

C2.3.7.2. If available on the local economy, use only unleaded gasoline in vehicles that are designed for this fuel.

C2.3.8. <u>Stack Heights</u>. H_g is the good engineering practice stack height necessary to minimize downwash of stack emissions due to aerodynamic influences from nearby structures.

C2.3.8.1. Stacks shall be designed and constructed to heights at least equal to the largest H_g calculated from either of the following two criteria:

C2.3.8.1.1. $H_g = H + 1.5L$, where H is the height of the nearby structure measured from the ground level elevation at the base of the stack, and L is the lesser of height or projected width of the nearby structure(s). A structure is determined to be nearby when the stack is located within 5L of the structure envelope but ≤ 0.8 km (0.5 mile). This calculation shall be performed for each structure nearby the stack being studied to determine the greatest H_g .

C2.3.8.1.2. H_g is the height demonstrated by a fluid model or a field study, which ensures that the emissions from a stack do not result in maximum ground-level concentrations of any air pollutant as a result of atmospheric downwash, wakes, or eddy effects created by the source itself, nearby structures, or nearby terrain features at least 40% in excess of the maximum ground-level concentrations of any air pollutant experienced in the absence of such atmospheric downwash, wakes, or eddy effects. For purposes of this paragraph, "nearby" means <0.8 km (0.5 mile), except that the portion of a terrain feature may be considered to be nearby which falls within a distance of up to 10 times the maximum height (H_t) of the feature, not to exceed 2 miles if such feature achieves a height (H_t) 0.8 km from the stack that is at least 40% of the good engineering practice stack height determined by the formulae provided in C2.3.8.1.1 of this part or 26 meters, whichever is greater, as measured from the ground-level elevation at the base of the stack. The height of the structure or terrain feature is measured from the ground-level elevation at the base of the stack.

C2.3.9. <u>Diesel/Gaseous/Gasoline Engine Generating and Gas Turbines Units</u>. These units must comply with the emission standards in Tables C2.T2, C2.T3 and C2.T4. The following are exempt from these standards:

C2.3.9.1. Portable or mobile equipment.

C2.3.9.2. Stationary back-up power equipment, such as emergency generators.

C2.3.10. <u>Emission Limits for Sulfur Oxides</u>. Maximum permissible emission limits for the amount of sulfur oxides emitted from an outlet of a facility, q, is calculated as follows:

 $q = K \times 10^{-3} H_e^2$

where,

- is the hourly volume of SO_X emitted (Nm^3/hr). Nm^3 represents $m^3/hour$ at a qnormal temperature of 0°C and a pressure of 1 atmosphere.
- Κ is a constant value assigned to each designated region. The most protective value (e.g., the smallest K-value) applicable to the region must be used (see Table C2.T7).
- H_{e} is the effective stack height calculated as follows:

$$\begin{split} H_e &= H_o + 0.65 \big(H_m + H_t \big) \\ H_m &= \frac{0.795 \sqrt{Q \cdot V}}{1 + \frac{2.58}{V}} \\ H_t &= 2.01 \times 10^{-3} \cdot Q \cdot (T - 288) \cdot (2.30 \log J + \frac{1}{J} - 1) \\ J &= \frac{1}{\sqrt{Q \cdot V}} (1460 - 296 \times \frac{V}{T - 288}) + 1 \end{split}$$

where,

77

- H_e is the effective stack height, in meters
- H_o is the actual stack height, in meters.
- is the flue gas flow rate at 15°C (59°F) in m³/sec Q
- Vis the flue gas speed in m/sec and
- Т is the flue gas temperature, in absolute temperature

Volatile Organic Compound (VOC). Operators will incorporate procedures which C2.3.11. minimize the direct release of VOCs into the atmosphere at painting facilities, printing facilities, cleaning facilities, storage tanks, drying facilities and/or resin dryer. Emissions from those facilities using organic solvents shall not exceed the threshold values indicated in Table C2.T10.

Class I							
CFC - 11	CFC - 114	CFC - 215	Halon - 1211				
CFC - 12	CFC - 115	CFC - 216	Halon - 1301				
CFC - 13	CFC - 211	CFC - 217	Halon - 2402				
CFC - 111	CFC - 212		Carbon Tetrachloride				
CFC - 112	CFC - 213		Methyl Chloroform				
CFC - 113	CFC - 214		Methyl Bromide				
CHFBr ₂	$C_2H_2F_3Br$	C ₃ HF ₆ Br	$C_3H_3F_4Br$				
HBFC-2201 (CHF ₂ Br)	$C_2H_3FBr_2$	$C_3H_2FBr_5$	$C_3H_4FBr_3$				
CH ₂ FBr	$C_2H_3F_2Br$	$C_3H_2F_2Br_4$	$C_3H_4F_2Br_2$				
C ₂ HFBr ₄	C ₂ H4FBr	$C_3H_2F_3Br_3$	$C_3H_4F_3Br$				
$C_2HF_2Br_3$	C ₃ HFBr ₆	$C_3H_2F_4Br_2$	$C_3H_5FBr_2$				
$C_2HF_3Br_2$	$C_3HF_2Br_5$	$C_3H_2F_5Br$	$C_3H_5F_2Br$				
C ₂ HF ₄ Br	C ₃ HF ₃ Br ₄	C ₃ H ₃ FBr ₄	C ₃ H ₆ FBr				
$C_2H_2FBr_3$	C ₃ HF ₄ Br ₃	$C_3H_3F_2Br_3$	Chlorobromomethane				
$C_2H_2F_2Br_2$	$C_3HF_5Br_2$	$C_3H_3F_3Br_2$					
		lass II					
HCFC – 21	HCFC – 133a	HCFC – 225cb	HCFC – 243				
HCFC – 22	HCFC – 141b	HCFC – 226	HCFC – 244				
HCFC – 31	HCFC – 142b	HCFC – 231	HCFC – 251				
HCFC – 121	HCFC - 151	HCFC – 232	HCFC – 252				
HCFC – 122	HCFC – 221	HCFC - 233	HCFC – 253				
HCFC – 123	HCFC – 222	HCFC – 234	HCFC – 261				
HCFC - 124	HCFC – 223	HCFC – 235	HCFC – 262				
HCFC - 131	HCFC – 224	HCFC - 241	HCFC – 271				
HCFC – 132b	HCFC – 225ca	HCFC – 242					

Table C2.T1.	Class I and II Ozone Depleting Substances
--------------	---

Note: All isomers of the above chemicals are ODS, except isomers of (1,1,1-trichloroethane (also known as methyl chloroform)) such as 1,1,2-trichloroethane.

Substance	Emission Source	Emission Standards	Methods		
Substance Emission Source Sulfur Combustion of fuel and minerals in boilers, stationary engines and waste incinerators		 The standard is set according to the height of the exhaust outlet (H_e) and the value of K assigned to each area (see paragraph C2.3.10) General emission standards: K = 3.0 to 17.5 Special emission standards: K = 1.17 to 2.34 Fuel use standard: Sulfur in fuel is set for each area. Sulfur content: <0.5 to 1.2 % Total emissions: Set for each area/factory based on the total emission reduction plan. 	 SO_X: JIS K0103 Emission quality: JIS Z8808. Sulfur content in fuel: JIS K2301, JIS K2541 to K2541-7 or JIS M8813 Fuel consumption: JIS Z8762-1 to Z8762-4, or equivalent. 		
Soot & Dust	Combustion of fuel and minerals in boilers, stationary engines, waste incinerators and the use of an electric furnace	Emission standards for each facility/scale (see Table C2.T3) General emission standards: 0.04 - 0.3 g/Nm ³ Special emission standards: 0.03 - 0.2 g/Nm ³	Soot & Dust: JIS Z8808 O ₂ : Absorption method using an Orsat gas analyzer (or equivalent)		
Hydrogen Chloride (HCl)	Combustion or chemical treatment at waste incinerators	Emission standard for Waste Incinerators: 700 mg/Nm ³ In Saitama Prefecture, emission standard for waste incinerators with a grate area ≥2 m ² or incineration capacity ≥200 kg/hr; Incineration capacity >500 kg/hr, allowable limits are 200 mg/Nm ³ Incineration capacity <500 kg/hr, allowable limits are 500 mg/Nm ³	HCl for waste incinerators: Measuring HCl concentration by the methods stipulated in JIS K0107, and the oxygen concentration in the emission gas by the same method of soot and dust.		
Nitrogen Oxide (NO _X)	Combustion, synthesis or degradation in a boilers, stationary engines, and waste incinerators	 Emission standards for each facility/scale (see Table C2.T3) 60 - 950 ppm Total emissions Set for each area/factory based on total emission reduction plan 	JIS K0104 for measuring NO_X concentration in the emission gas, and JIS Z8808 for measuring soot and dust for the oxygen concentrations in the emission gas.		

Table C2.T2. Emission St	tandards for Hazardous Air Pollutants
--------------------------	---------------------------------------

Notes:

Target Facilities:

Boiler: Heating surface area $\geq 10 \text{ m}^2$

Stationary Engine: Fuel Combustion Rate: ≥50 L/hr (Gas Turbine and Diesel Engine) Fuel Combustion Rate: ≥35 L/hr (Gaseous and Gasoline Engine) Waste Incinerator: Grate area ≥2 m², or burning capacity ≥200 kg/hr

Monitoring Frequency: Twice a year

	Specification		Soot and Dust			NOx	
Type of Facility		Types	Total	General	Special	Total	Standard
i ype of i defifty		i ypes	Emission	Area ^{#1}	Årea ^{#2}	Emission	(ppm)
			(Nm ³ /hour)	(g/Nm^3)	(g/Nm^3)	(Nm ³ /hour)	
		Gas boiler heating area $\geq 10 \text{ m}^2$	≥40,000	0.05	0.03	≥500,000 ≥40,000 but	60 100
		burner combustion rate:				<500,000 ≥10,000	
		≥50 L/hr	<40,000	0.10	0.05	but <40.000 <10,000	130 150
						≥500,000	130
			≥200,000	0.05	0.04	≥300,000	150
		Liquid boiler or gas and liquid boiler burner combustion	≥40,000 but <200,000	0.15	0.05	≥10,000 but	150
		rate: ≥50 L/hr	≥10,000 but <40,000	0.25	0.15	<500,000	
			<10,000	0.30	0.15	<10,000	180
			≥200,000	0.15	0.10	≥500,000	130
	Heating area ² $\geq 10 \text{ m}^2$, or Burner combustion rate $\geq 50 \text{ L/hr}^3$	Black liquid boiler or black liquid and gas or liquid fuel boiler	≥40,000 but <200,000	0.25	0.15	≥10,000 but <500,000	150
			<40,000	0.30	0.15	<10,000	180
		Liquid fuel boiler (heating area <10 m ²)		0.30	0.15		260
Boiler ¹		Coal boiler (heating area ≥10 m ²)	≥200,000	0.10	0.05	≥700,000	200
			≥40,000 but <200,000	0.20	0.10	≥40,000 but <700,000	250
			<40,000	0.30	0.15	<40,000	300
		Coal boiler (heating area <10 m ²)		0.30	0.15		350
						≥700,000	200
		Solid fuel boiler (others whose heating area is $\geq 10 \text{ m}^2$)	≥40,000	0.30	0.15	≥40,000 but <700,000	250
			<40,000	0.30	0.20	<40,000	300
		Solid fuel boiler (others whose heating area is <10 m ²)		0.30	0.20		350
			>40.000	0.30	0.15	≥500,000	130
		Boilers (others)	≥40,000 <40,000	0.50	0.15	≥10,000 but	150
				0.30	0.20	<500,000	
						<10,000	180

			Soot and Dust			NOx	
Type of Facility	Specification	Туре	Size (metric tons)	General Area ^{#1} (g)	Special Area ^{#2} (g)	Size (Nm ³)	Standard (ppm)
Gas Turbine Engine	Fuel Combustion			0.05	0.04		70
Diesel Engine	Rate: ≥50 L/hr ³			0.10	0.08		950
Gaseous Engine	Fuel Combustion			0.05	0.04		600
Gasoline Engine	Rate: ≥35 L/hr			0.05	0.04		600
		Waste material	≥4	0.0)4		
	Grate area: ² $\geq 2 \text{ m}^2$ Incineration rate: $\geq 200 \text{ kg/hr}$	continuous incinerator (by vortex combustion method)	≥2 but <4	0.08		All	450
		Peculiar ⁴ waste continuous material incinerator Waste material continuous incinerator (others)	≥4	0.0)4	≥40,000	250
			≥2 but <4	0.08		<40,000	700
Waste material			≥4	0.04		All 250	250
incinerator			≥ 2 but < 4	0.08			250
		Waste material incinerator (others)	<2 0.15		5	≥40,000	250
						<40,000	

Table C2.T3. Emission Standards for Soot and Dust and NO_X (continued)

Notes:

#1. Soot and dust emission standard per Nm³ of emitting gas in general area (see Table C2.T7).

#2. Soot and dust emission standard per Nm³ of emitting gas in special area (see Table C2.T7). These standards apply for facilities built after 1 June 1982 in Tokyo Metropolitan area (special wards), Yokohama and Yokosuka.

1. Hot blast boilers are included. Boilers which use electricity or waste heat alone are excluded.

2. Horizontal projected area.

- 3. Calculation in terms of heavy oil.
- 4. A "peculiar" incinerator refers to an incinerator that burns waste generated from a process that produces or uses nitro-, amino-, or cyano-compounds or their derivatives, or from a process that treats wastewater using ammonia.
- 5. Monitoring Frequency: Twice a year.

 $(Nm^3 = Normal cubic meters)$

Type of	Туре	Scale	Date Facility Installed	Emission Sta	
Facility	Турс		5	Class 1 Area ¹	
		Fuel combustion	Prior to 15 Mar 1991	80	85
	Gas Boiler	capacity ≥100 L/hr	On or After 15 Mar 1991	45	45
	Gas Donei	Fuel combustion	Prior to 15 Mar 1991	85	95
		capacity <100 L/hr	On or After 15 Mar 1991	45	55
Boiler		Fuel combustion	Prior to 15 Mar 1991	90	100
		capacity ≥100 L/hr	15 Mar 1991 to 31 Mar 2001	65	65
	Liquid Boiler		On or After 1 Apr 2001	50	65
		Fuel combustion	Prior to 15 Mar 1991	100	110
		capacity <100 L/hr	On or After 15 Mar 1991	65	75
		Rated output:	Prior to 1 Apr 2001	25	35
		<u>≥</u> 50,000 kw	On or After 1 Apr 2001	10	10
	Gas Turbine	Rated output:	Prior to 1 Apr 1992	35	35
	(gaseous fuel)	2,000-50,000 kw	On or After 1 Apr 1992	25	35
		Rated output:	Prior to 1 Apr 1992	50	50
Gas		< 2,000 kw	On or After 1 Apr 1992	35	50
Turbine	Gas turbine (liquid fuel)	Rated output:	Prior to 1 Apr 2001	25	50
		<u>≥</u> 50,000 kw	On or After 1 Apr 2001	10	10
		Rated output:	Prior to 1 Apr 1992	50	50
		2,000-50,000 kw	On or After 1 Apr 1992	25	50
		Rated output:	Prior to 1 Apr 1992	60	60
		< 2,000 kw	On or After 1 Apr 1992	35	60
	Fuel combustion ≥ 23	/	Prior to 1 Apr 1992	190	380
	rated output \geq 2,000		On or After 1 Apr 1992	110	270
Diesel	Fuel combustion ≥ 23		Prior to 1 Apr 1992	190	610
Engine	rated output < 2,000 kw		On or After 1 Apr 1992	110	500
	Fuel combustion < 25 L/hr		Prior to 1 Apr 1992	500	610
			On or After 1 Apr 1992	380	500
	Fuel combustion ≥ 50) L/hr	Prior to 1 Apr 1992	300	500
Gas			On or After 1 Apr 1992	200	500
Engine	Fuel combustion < 50) L/hr	Prior to 1 Apr 1992	500	500
			On or After 1 Apr 1992	300	500
	Fuel combustion ≥ 50) L/hr	Prior to 1 Apr 1992	300	500
Gasoline			On or After 1 Apr 1992	200	500
Engine	Fuel combustion < 50) L/hr	Prior to 1 Apr 1992	500	500
e			On or After 1 Apr 1992	300	500

Notes:

1. Class 1 Areas: Areas which is designated as Special District, Musashino City, Mitaka City, Chofu City, Komae City, Nishitokyo City (limited to the area of former Hoya City).

Class 2 Areas: All areas other than those defined as Class 1 Area.

		Maximum Design Heat Input Capacity						
	10 - 1	10 – 100 million BTU/hr			Size >100 million BTU/hr			
Fuel Type	PM	Opacity ²	SO_2 ³	PM	Opacity ²	SO_2 ³	NO _X ⁴	
Gaseous	N/A	N/A	N/A	N/A	N/A	N/A	0.20	
Gaseous - Coal Derived	N/A	N/A	N/A	N/A	N/A	N/A	0.50	
Liquid Fossil Fuel	N/A	20%	0.50 5	0.10	20%	0.80	0.30	
Solid Fossil Fuel	0.10	20%	1.20	0.10	20%	1.20	0.70	
Other Solid Fuel ⁶	0.30	20%	N/A	0.20	20%	N/A	N/A	

Table C2.T5. Emission Standards for Steam Generating Units¹

N/A = Not applicable.

1. Standards apply to units constructed or substantially modified after 1 October 1994. Standards do not apply during periods of startup, shutdown, malfunction, soot blowing, or when emergency conditions exist. Unless specified otherwise, emission standards are in lb/million BTU.

2. The opacity standards do not apply to units <30 million BTU/hr. The 20% standard applies to the average opacity over a 6-minute period. A 30% opacity value is allowed for one 6-minute period per hour.

3. SO₂ is best controlled and compliance documented by limiting fuel sulfur content. SO₂ emissions (lb/million BTU) = 0.02 X sulfur content of fuel (%) / heat content of fuel (HHV, million BTU/lb fuel).

[e.g., for fuel oil with 0.5% sulfur, SO₂ = $0.02 \times 0.5 / 0.019 = 0.53$ lb/million BTU].

- 4. Emission limitation for NO_X is based on a 30-day rolling average. NO_X standard does not apply when a fossil fuel containing at least 25% by weight of coal refuse is burned in combination with gaseous, liquid, or other solid fossil fuel.
- 5. Instead of 0.5 lb/million BTU of SO₂, fuel oil combustion units may comply with a 0.5% average fuel sulfur content limit (weight percent) which is statistically equivalent to 0.5 lb/million BTU.
- 6. Other solid fuels include wood or waste derived fuels.

Table C2.T6	. Dioxin Standards for Waste and Specified Waste Incinerators
-------------	---

Incinerating Capacity (metric tons/hour)	Emission Standards for New Waste Incinerators	Emission Standards for Existing Waste Incinerators ¹
≥4	0.1 ng-TEQ/Nm ³	1 ng-TEQ/Nm ³
≥2 but <4	1 ng-TEQ/Nm ³	5 ng-TEQ/Nm ³
<2 2	5 ng-TEQ/Nm ³	10 ng-TEQ/Nm ³
		TEQ = Toxic Equivalent

Notes:

1. New Waste Incinerators: Specified waste incinerator (hearth area $\ge 0.5 \text{ m}^2$ or an incinerating capacity $\ge 50 \text{ kg/hr}$, built on or after 16 January 2000) and new waste incinerator (grate area $\ge 2 \text{ m}^2$ or an incinerating capacity $\ge 200 \text{ kg/hr}$, built on or after 2 December 1997).

2. Existing Waste Incinerators: Grate area ≥2 m² or an incinerating capacity ≥200 kg/hr, built on or before 1 December 1997.

Monitoring Frequency: Once a year

Analytical Method: JIS K0311 (2008)

	Area	K-Value
al	Yokohama, Yokosuka, Wards of Tokyo	1.17
Special	Kisarazu	1.75
SI	Iwakuni, Otake	2.34
	Kure	5.0
	Hachinohe	6.0
	Fussa, Musashimurayama, Kiyose, Tachikawa, Akishima, Hamura, Fuchu, Inagi, Tama, Hachioji, Mizuho	6.42
	Fukuoka	8.76
General	Wako, Tokorozawa, Niiza, Sayama, Kin, Naha, Urasoe, Ishikawa Region of Uruma, Ginowan, Chatan, Kitanakagusuku	9.0
Ŭ	Sasebo	10.0
	Ayase, Sagamihara, Yamato, Ebina, Zushi, Zama	11.5
	Kadena, Numazu, Ginoza, Onna, Yomitan, Katsuren Region of Uruma, Itoman, Okinawa City	13.0
	Misawa, Gushikawa Region of Uruma, Nago, Motobu, Higashi, Kunigami, Ie, Gotenba, Tomiyachi, Tango	17.5

Table C2.T7. Sulfur Oxide (SO_X) K-Values (see paragraph C2.3.10 for application)

Table C2.T8. Emission Standards for Incinerators

Pollutant	Emission Standards ¹				
Incinerator Type	Existing MWC units ²		MWC units that begin undergo substant	CISWI units	
Rated Capacity	35-250 tpd	>250 tpd	35-250 tpd	>250tpd	All units
Particulate	70 mg/dscm	27 mg/dscm	24 mg/dscm		70 mg/dscm
Opacity	10	%	10)%	10%
NO _X	N/A	See Note 3	500 ppmv	150 ppmv	388 ppmv
SO_2	50% reduction or 77 ppmv	75% reduction or 29 ppmv	80% reduction or 30 ppmv		20 ppmv
Dioxins/furans	125 ng/dscm	See Note 4	13 ng/dscm		0.41 ng/dscm
Cadmium	0.10 mg/dscm	0.040 mg/dscm	0.020 mg/dscm		0.004 mg/dscm
Lead	1.6 mg/dscm	0.44 mg/dscm	0.20 mg/dscm		0.04 mg/dscm
Mercury	85% reduction of	r 0.080 mg/dscm	85% reduction or 0.080 mg/dscm		0.47 mg/dscm
HC1	50% reduction or 250 ppmv	95% reduction or 29 ppmv	80% reduction or 30 ppmv	95% reduction or 25 ppmv	62 ppmv
Fugitive ash	5% of hourly observation period		5% of hourly ob	N/A	

Notes:

1. Emission standard concentrations (mg/dscm, ppmv) are corrected to 7% oxygen, dry basis at standard conditions. mg/dscm = milligram per dry standard cubic meter, ng = nanogram, ppm = parts per million.

2. Construction or modifications that were undertaken prior to September 2008 are not subject to these requirements. These criteria are not intended to require retrofitting of MWC units.

3. NO_X limits for units rated > 250 tons/day (tpd) capacity: mass burn refractory-no limit; mass burn waterwall-205 ppmv; mass burn rotary waterwall: 250 ppmv; refuse-derived fuel combustor-250 ppmv; fluidized bed combustor-180 ppmv.

4. Dioxins/furans limits for units rated >250 tpd capacity: MWC with electrostatic precipitator (ESP)-60 ng/dscm; MWC with non-ESP-30 ng/dscm.

Incinerator Type	Existing MWC units ²		MWC units that begin new construction or undergo substantial modification ²		CISWI units
Rated Capacity	35-250 tpd	>250 tpd	35-250 tpd	>250tpd	All units
Fluidized bed		100 ppmv	v (4-hr avg)		
Fluidized bed, mixed fuel	200 ppmv		200 ppmv	100 ppmv	
(wood/refuse-derived fuel)	(24-hr avg)		(24-hr avg)	(4-hr avg)	
Mass burn rotary refractory	100 ppmv (4-hr avg)		100 ppmv (24-hr avg)		
Mass burn rotary waterfall	250 ppmv (2	24-hr avg)	100 ppinv (24-in avg)		
Mass burn waterfall and refractory	100 ppmv (4-hr avg)		100 ppmv (4-hr avg)		157 nnm
Mixed fuel-fired	150 mmm	(1 hr ava)	150		157 ppmv
(pulverized coal/refuse-derived fuel)	150 ppmv (4-hr avg) 150 ppmv (4-hr avg)		(4-m avg)		
Modular starved-air and excess air	50 ppmv (4-hr avg)		50 ppmv (4-hr avg)		
Spreader stoker, mixed fuel-fired (coal/refuse-derived fuel) Stoker, refuse-derived fuel	200 ppmv (24-hr avg)		150 ppmv (24-hr avg)		
Stoker, refuse-derived fuel					

Table C2.T9. Carbon Monoxide	Operating Limits for Incinerators ¹
------------------------------	--

Notes:

1. Compliance is determined by continuous emission monitoring systems.

2. Construction or modifications that were undertaken prior to September 2008 are not subject to these requirements. These criteria are not intended to require retrofitting of MWC units.

Table C2.T10 Emission Standards for VOCs

Facility	Ventilation Capacity (m ³ /hour)	Area ¹ (m ²)	Size (kilo liters)	Emission Sta (ppmC	
Drying facilities for manufacture of chemical products	≥ 3,000			600	
Painting facilities for spray coating	\geq 100,000			700	
Drying facilities for painting (other than spray	\geq 10,000			Wood products manufacturing	1,000
coating and electrostatic painting)	,			Others	600
Drying facilities for manufacture of adhesive bonding of copper-clad laminate for printed- circuit board, adhesive tape or sheet, release coated paper or wrapping material	≥ 5,000			1,400	
Drying facilities for adhesive bonding	≥ 15,000			1,400	
Drying facilities using rotary offset printing	\geq 7,000			400	
Drying facilities using gravure printing	\geq 27,000			700	
VOC cleaning facilities		≥ 5		400	
VOC storage tanks ³			≥ 1,000	60,000	

Notes:

1. Area is the VOC accessible surface area exposed to the air.

2. Emission standards are calculated in terms cubic centimeters per cubic meter (parts per million by volume) and converted as carbon, i.e., ppmC. Sampling method is JIS K0095. Analysis is by JIS K0114 or JIS K0151, with correction for non-VOC compounds.

3. VOC storage tanks: volatile organic compounds (e.g., gasoline, crude oil or naphtha) with a vapor pressure of more than 20 kilopascals at a temperature of 37.8°C (except enclosed type and floating roof type (including internal floating roof)).

4. Monitoring Frequency: Once a year.

C3. <u>CHAPTER 3</u>

DRINKING WATER

C3.1. <u>SCOPE</u>

This Chapter contains criteria for providing potable water.

C3.2. <u>DEFINITIONS</u>

C3.2.1. <u>Action Level</u>. The concentration of a substance in water that establishes appropriate treatment for a water system.

C3.2.2. <u>Appropriate DoD Medical Authority</u>. The medical professional designated by the in-theater DoD Component commander to be responsible for resolving medical issues necessary to provide safe drinking water at the DoD Component's installations.

C3.2.3. <u>Concentration/Time (CT)</u>. The product of residual disinfectant concentration (C) in mg/L determined before or at the first customer, and the corresponding disinfectant contact time (T) in minutes. CT values appear in Tables C3.T11 through C3.T24.

C3.2.4. <u>Conventional Treatment</u>. Water treatment, including chemical coagulation, flocculation, sedimentation, and filtration.

C3.2.5. <u>Diatomaceous Earth Filtration</u>. A water treatment process of passing water through a precoat of diatomaceous earth deposited onto a support membrane while additional diatomaceous earth is continuously added to the feed water to maintain the permeability of the precoat, resulting in substantial particulate removal from the water.

C3.2.6. <u>Direct Filtration</u>. Water treatment, including chemical coagulation, possibly flocculation, and filtration, but not sedimentation.

C3.2.7. <u>Disinfectant</u>. Any oxidant, including but not limited to, chlorine, chlorine dioxide, chloramines, and ozone, intended to kill or inactivate pathogenic microorganisms in water.

C3.2.8. <u>DoD Water System</u>. A public or non-public water system.

C3.2.9. <u>Emergency Assessment</u>. Evaluation of the susceptibility of the water source, treatment, storage and distribution system(s) to disruption of service caused by natural disasters, accidents, and sabotage.

C3.2.10. <u>First Draw Sample</u>. A 1-liter sample of tap water that has been standing in plumbing at least 6 hours and is collected without flushing the tap.

C3.2.11. <u>Groundwater Under the Direct Influence of Surface Water (GWUDISW)</u>. Any water below the surface of the ground with significant occurrence of insects or other microorganisms, algae, or large diameter pathogens such as *Giardia lamblia*; or significant and

relatively rapid shifts in water characteristics, such as turbidity, temperature, conductivity, or pH, which closely correlate to climatological or surface water conditions.

C3.2.12. <u>Haloacetic Acids (HAA5)</u>. The sum of the concentrations in mg/L of the haloacetic acid compounds (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid), rounded to 2 significant figures after addition.

C3.2.13. <u>Lead-free</u>. A maximum lead content of 0.2% for solder and flux, and 8.0% for pipes and fittings.

C3.2.14. <u>Lead Service Line</u>. A service line made of lead that connects the water main to the building inlet, and any lead pigtail, gooseneck, or other fitting that is connected to such line.

C3.2.15. <u>Maximum Contaminant Level (MCL)</u>. The maximum permissible level of a contaminant in water that is delivered to the free-flowing outlet of the ultimate user of a public water system except for turbidity for which the maximum permissible level is measured after filtration. Contaminants added to the water under circumstances controlled by the user, except those resulting from the corrosion of piping and plumbing caused by water quality, are excluded.

C3.2.16. <u>Maximum Residual Disinfectant Level (MRDL</u>). The level of a disinfectant added for water treatment measured at the consumer's tap, which may not be exceeded without the unacceptable possibility of adverse health effects.

C3.2.17. <u>Point-of-Entry (POE) Treatment Device</u>. A treatment device applied to the drinking water entering a facility to reduce contaminants in drinking water throughout the facility.

C3.2.18. <u>Point-of-Use (POU) Treatment Device</u>. A treatment device applied to a tap to reduce contaminants in drinking water at that tap.

C3.2.19. <u>Potable Water</u>. Water that has been examined and treated to meet the standards in this Chapter, and has been approved as potable by the appropriate DoD medical authority.

C3.2.20. <u>Public Water System (PWS)</u>. A system for providing piped water to the public for human consumption, if such system has at least 15 service connections or regularly serves a daily average of at least 25 individuals at least 60 days of the year. This also includes any collection, treatment, storage, and distribution facilities under control of the operator of such systems, and any collection or pretreatment storage facilities not under such control that are used primarily in connection with such systems. A PWS is either a "community water system" or a "non-community system":

C3.2.20.1. <u>Community Water System (CWS)</u>. A PWS that has at least 15 service connections used by year-round residents, or which regularly serves at least 25 year-round residents.

C3.2.20.2. <u>Non-Community Water System (NCWS)</u>. A PWS that serves the public, but does not serve the same people year-round.

C3.2.20.2.1. <u>Non-transient, Non-community Water System (NTNCWS)</u>. A PWS that supplies water to at least 25 of the same people at least 6 months per year, but not year round. Examples include schools, factories, office buildings, and hospitals that have their own water systems.

C3.2.20.2.2. <u>Transient, Non-Community Water System (TNCWS)</u>. A PWS that provides water to at least 25 persons (but not the same 25 persons) at least 6 months per year. Examples include but are not limited to gas stations, motels, and campgrounds that have their own water sources.

C3.2.21. <u>Sanitary Survey</u>. An on-site review of the water source, facilities, equipment, operation, and maintenance of a public water system to evaluate the adequacy of such elements for producing and distributing potable water.

C3.2.22. <u>Slow Sand Filtration</u>. Water treatment process where raw water passes through a bed of sand at a low velocity (1.2 ft/hr), resulting in particulate removal by physical and biological mechanisms.

C3.2.23. <u>Total Trihalomethanes</u>. The sum of the concentration in mg/L of chloroform, bromoform, dibromochloromethane, and bromodichloromethane.

C3.2.24. <u>Underground Injection</u>. A subsurface emplacement through a bored, drilled, driven or dug well where the depth is greater than the largest surface dimension, whenever the principal function of the well is emplacement of any fluid.

C3.2.25. <u>Vulnerability Assessment</u>. The process the commander uses to determine the susceptibility to attack from the full range of threats to the security of personnel, family members, and facilities, which provide a basis for determining antiterrorism measures that can protect personnel and assets from terrorist attacks.

C3.3. <u>CRITERIA</u>

C3.3.1. DoD water systems, regardless of whether they produce or purchase water, will:

C3.3.1.1. Maintain a map/drawing of the complete potable water system.

C3.3.1.2. Update the potable water system master plan at least every 5 years.

C3.3.1.3. Protect all water supply aquifers (groundwater) and surface water sources from contamination by suitable placement and construction of wells, by suitable placing of the new intake (heading) to all water treatment facilities, by siting and maintaining septic systems and onsite treatment units, and by appropriate land use management on DoD installations.

C3.3.1.4. Conduct sanitary surveys of the water system at least every 3 years for systems using surface water, and every 5 years for systems using groundwater, or as warranted, including review of required water quality analyses. Off-installation surveys will be coordinated with the appropriate GoJ authorities.

C3.3.1.5. Provide proper treatment for all water sources. Surface water supplies, including GWUDISW, must conform to the surface water treatment requirements set forth in Table C3.T1. Groundwater supplies, at a minimum, must be disinfected.

C3.3.1.6. Maintain a continuous positive pressure of at least 20 pounds per square inch (psi) in the water distribution system.

C3.3.1.7. Perform water distribution system operation and maintenance practices consisting of:

C3.3.1.7.1. Maintenance of a disinfectant residual throughout the water distribution system (except where determined unnecessary by the appropriate DoD medical authority);

C3.3.1.7.2. Proper procedures for repair and replacement of mains (including disinfection and bacteriological testing);

C3.3.1.7.3. An effective annual water main flushing program;

C3.3.1.7.4. Proper operation and maintenance of storage tanks and reservoirs; and

C3.3.1.7.5. Maintenance of distribution system appurtenances (including hydrants and valves).

C3.3.1.8. Establish an effective cross connection control and backflow prevention program.

C3.3.1.9. Manage underground injection on DoD installations to protect underground water supply sources. At a minimum, conduct monitoring to determine the effects of any underground injection wells on nearby groundwater supplies.

C3.3.1.10. Develop and update as necessary an emergency contingency plan to ensure the provision of potable water despite interruptions from natural disasters and service interruptions. At a minimum, the plan will include:

C3.3.1.10.1. Plans, procedures, and identification of equipment that can be implemented or utilized in the event of an intentional or un-intentional disruption:

C3.3.1.10.2.	Identification of key personnel;
C3.3.1.10.3.	Procedures to restore service;
C3.3.1.10.4.	Procedures to isolate damaged lines;
C3.3.1.10.5.	Identification of alternative water supplies; and
C3.3.1.10.6.	Installation public notification procedures.

C3.3.1.11. Use only lead-free pipe, solder, flux, and fittings in the installation or repair of water systems and plumbing systems for drinking water. Provide installation public notification concerning the lead content of materials used in distribution or plumbing systems, or the corrosivity of water that has caused leaching, which indicates a potential health threat if exposed to leaded water, and remedial actions which may be taken.

C3.3.1.12. Maintain records showing monthly operating reports for at least 3 years, and records of bacteriological results for not less than 5 years, and chemical results for not less than 10 years.

C3.3.1.13. Document corrective actions taken to correct breaches of criteria and maintain such records for at least 3 years. Cross connection and backflow prevention testing and repair records should be kept for at least 10 years.

C3.3.1.14. Conduct vulnerability assessments, which include, but are not limited to, a review of:

C3.3.1.14.1. Pipes and constructed conveyances, physical barriers, water collection, pretreatment, treatment, storage, and distribution facilities, electronic, computer, or other automated systems utilized by the PWS;

C3.3.1.14.2. Use, storage, or handling of various chemicals; and

C3.3.1.14.3. Operation and maintenance of the water storage, treatment, and distribution systems.

C3.3.2. Regardless of whether a DoD water system produces or purchases water, it will, by independent testing or validated supplier testing, ensure conformance with the following:

C3.3.2.1. Total Coliform Bacteria Requirements

C3.3.2.1.1. An installation responsible for a PWS will conduct a bacteriological monitoring program to ensure the safety of water provided for human consumption and allow evaluation with the total coliform-related MCL. The MCL is based only on the presence or absence of total coliforms. The MCL is no more than 5% positive samples per month for a system examining 40 or more samples a month, and no more than 1 positive sample per month when a system analyzes less than 40 samples per month. Further, the MCL is exceeded whenever a routine sample is positive for fecal coliforms or *E. coli* or any repeat sample is positive for total coliforms.

C3.3.2.1.2. Each system must develop a written, site-specific monitoring plan and collect routine samples according to Table C3.T2, "Total Coliform Monitoring Frequency."

C3.3.2.1.3. Systems with initial samples testing positive for total coliforms will collect repeat samples as soon as possible, preferably the same day. Repeat sample locations are required at the same tap as the original sample plus an upstream and downstream sample, each within 5 service connections of the original tap. Any additional repeat sampling which may be

required will be performed according to the appropriate DoD medical authority. Monitoring will continue until total coliforms are no longer detected.

C3.3.2.1.4. When any routine or repeat sample tests positive for total coliforms, it will be tested for fecal coliform or *E. coli*. Fecal-type testing can be foregone on a total coliform positive sample if fecal or *E. coli* is assumed to be present.

C3.3.2.1.5. If a system has exceeded the MCL for total coliforms, the installation will complete the notification in subsection C3.3.3 to:

C3.3.2.1.5.1. The appropriate DoD medical authority, as soon as possible, but in no case later than the end of the same day the command responsible for operating the PWS is notified of the result.

C3.3.2.1.5.2. The installation public as soon as possible, but not later than 72 hours after the system is notified of the test result that an acute risk to public health may exist.

C3.3.2.2. Inorganic Chemical Requirements

C3.3.2.2.1. An installation responsible for a PWS will ensure that the water distributed for human consumption does not exceed applicable limitations set out in Table C3.T3. Except for nitrate, nitrite, and total nitrate/nitrite, for systems monitored quarterly or more frequently, a system is out of compliance if the annual running average concentration of an inorganic chemical exceeds the MCL. For systems monitored annually or less frequently, a system is out of compliance if a single sample exceeds the MCL. For nitrate, nitrite, and total nitrate/nitrite, system compliance is determined by averaging the single sample that exceeds the MCL with its confirmation sample; if this average exceeds the MCL, the system is out of compliance.

C3.3.2.2.2. Systems will be monitored for inorganic chemicals at the frequency set in Table C3.T4., "Inorganics Monitoring Requirements."

C3.3.2.2.3. If a system is out of compliance, the installation will complete the notification in paragraph C3.3.3 as soon as possible. If the nitrate, nitrite, or total nitrate and nitrite MCLs are exceeded, then this is considered an acute health risk and the installation will complete the notification to:

C3.3.2.2.3.1. The appropriate DoD medical authority as soon as possible, but in no case later than the end of the same day the command responsible for operating the PWS is notified of the result.

C3.3.2.2.3.2. The installation public as soon as possible, but not later than 72 hours after the system is notified of the test result. If the installation is only monitoring annually on the basis of direction from the appropriate DoD medical authority, it will immediately increase monitoring in accordance with Table C3.T4, "Inorganics Monitoring Requirements," until remedial actions are completed and authorities determine the system is reliable and consistent.

C3.3.2.2.4. The MCL for arsenic applies to CWS and NTNCWS.

C3.3.2.3. Fluoride Requirements

C3.3.2.3.1. An installation commander responsible for a PWS will ensure that the fluoride content of drinking water does not exceed the MCL of 4 mg/L, as stated in Table C3.T3, "Inorganic Chemical MCLs."

C3.3.2.3.2. Systems will be monitored for fluoride by collecting 1 treated water sample annually at the entry point to the distribution system for surface water systems, and once every 3 years for groundwater systems. Daily monitoring is recommended for systems practicing fluoridation using the criteria in Table C3.T5, "Recommended Fluoride Concentrations at Different Temperatures."

C3.3.2.3.3. If any sample exceeds the MCL, the installation will complete the notification in paragraph C3.3.3 as soon as possible, but in no case later than 14 days after the violation.

C3.3.2.4. Lead and Copper Requirements

C3.3.2.4.1. DoD CWS and NTNCWS will comply with action levels (distinguished from the MCL) of 0.015 mg/L for lead and 1.3 mg/L for copper to determine if corrosion control treatment, public education, and removal of lead service lines, if appropriate, are required. Actions are triggered if the respective lead or copper levels are exceeded in more than 10% of all sampled taps.

C3.3.2.4.2. Affected DoD systems will conduct monitoring in accordance with Table C3.T6, "Monitoring Requirements for Lead and Copper Water Quality Parameters." High risk sampling sites will be targeted by conducting a materials evaluation of the distribution system. Sampling sites will be selected as stated in Table C3.T6.

C3.3.2.4.3. If an action level is exceeded, the installation will collect additional water quality samples specified in Table C3.T6, "Monitoring Requirements for Lead and Copper Water Quality Parameters." Optimal corrosion control treatment will be pursued. If action levels are exceeded after implementation of applicable corrosion control and source water treatment, lead service lines will be replaced if the lead service lines cause the lead action level to be exceeded. The installation commander will implement an education program for installation personnel (including U.S. and Japanese) within 60 days and will complete the notification in paragraph C3.3.3 as soon as possible, but in no case later than 14 days after the violation.

C3.3.2.5. Synthetic Organics Requirements

C3.3.2.5.1. An installation responsible for CWS and NTNCWS will ensure that synthetic organic chemicals in water distributed to people do not exceed the limitations delineated in Table C3.T7, "Synthetic Organic Chemical MCLs." For systems monitored quarterly or more frequently, a system is out of compliance if the annual running average concentration of an organic chemical exceeds the MCL. For systems monitored annually or less frequently, a system is out of compliance if a single sample exceeds the MCL.

C3.3.2.5.2. Systems will be monitored for synthetic organic chemicals according to the schedule stated in Table C3.T8, "Synthetic Organic Chemical Monitoring Requirements."

C3.3.2.5.3. If a system is out of compliance, the notification set out in paragraph C3.3.3 shall be completed as soon as possible, but in no case later than 14 days after the violation. The installation will immediately begin quarterly monitoring and will increase quarterly monitoring if the level of any contaminant is at its detection limit but less than its MCL, as noted in Table C3.T8, "Synthetic Organic Chemical Monitoring Requirements," and will continue until the installation commander determines the system is back in compliance, and all necessary remedial measures have been implemented.

C3.3.2.6. Disinfectant/Disinfection Byproducts (DDBP) Requirements

C3.3.2.6.1. An installation responsible for a CWS and NTNCWS that adds a disinfectant (oxidant, such as chlorine, chlorine dioxide, chloramines, or ozone) to any part of its treatment process (to include the addition of disinfectant by a local water supplier) will:

C3.3.2.6.1.1. Ensure that the MCL of 0.08 mg/L for total trihalomethanes (TTHM), the MCL of 0.06 mg/L for haloacetic acids (HAA5), the MCL of 1.0 mg/L for chlorite, and the MCL of 0.01 mg/L for bromate are not exceeded in drinking water.

C3.3.2.6.1.2. Ensure that the maximum residual disinfectant level (MRDL) of 4.0 mg/L for chlorine, the MRDL of 4.0 mg/L (measured as combined total chlorine) for chloramines when ammonia is added during chlorination, and the MRDL of 0.8 mg/L for chlorine dioxide are not exceeded in drinking water. Operators may increase residual disinfectant levels of chlorine or chloramines (but not chlorine dioxide) in the distribution system to a level and for a time necessary to protect public health to address specific microbiological contamination problems caused by circumstances such as distribution line breaks, storm runoff events, source water contamination, or cross-connections.

C3.3.2.6.2. Such systems that add a disinfectant will monitor TTHM and HAA5 in accordance with Table C3.T9, "Disinfectant/Disinfection Byproducts Monitoring Requirements." Additional disinfectant and disinfection byproduct monitoring for systems that utilize chlorine dioxide, chloramines, or ozone are also included in Table C3.T9.

C3.3.2.6.3. For TTHM and HAA5, a system is noncompliant when the running annual average of quarterly averages of all samples taken in the distribution system, computed quarterly, exceed the MCL for TTHM, 0.080 mg/L, or the MCL for HAA5, 0.060 mg/L. Refer to Table C3.T9 for chlorine, chloramine, and chlorine dioxide compliance requirements. If a system is out of compliance as described in Table C3.T9, the installation will accomplish the notification requirements outlined in paragraph C3.3.3 as soon as possible, but in no case later than 14 days after the violation, and undertake remedial measures.

C3.3.2.7. Radionuclide Requirements

C3.3.2.7.1. An installation responsible for a CWS will test the system for conformance with the applicable radionuclide limits contained in Table C3.T10, "Radionuclide MCLs and Monitoring Requirements."

C3.3.2.7.2. Systems will perform radionuclide monitoring as stated in Table C3.T10.

C3.3.2.7.3. If the average annual MCL for gross alpha activity is exceeded, the installation will complete the notification according to the procedures in paragraph C3.3.3 within 14 days. Monitoring will continue until remedial actions are completed and the average annual concentration no longer exceeds the respective MCL. Continued monitoring for gross alpha-related contamination will occur quarterly, while gross beta-related monitoring will be monthly. If any gross beta MCL is exceeded, the major radioactive components will be identified.

C3.3.2.8. <u>Surface Water Treatment Requirements</u>. DoD water systems that use surface water sources or GWUDISW will meet the surface water treatment requirements delineated in Table C3.T1. If the turbidity readings in Table C3.T1 are exceeded, the installation will complete the notification in paragraph C3.3.3 as soon as possible, but in no case later than 14 days after the violation and undertake remedial action. Surface water and GWUDISW systems that make changes to their disinfection practices (e.g., change in disinfectant or application point) in order to meet DDBP requirements (paragraph C3.3.2.6), will ensure that protection from microbial pathogens is not compromised.

C3.3.2.9. <u>Non-Public Water Systems</u>. DoD NPWSs will be monitored for total coliforms, at a minimum, and disinfectant residuals periodically.

C3.3.2.10. <u>Alternative Water Supplies</u>. DoD installations will, if necessary, only utilize alternative water sources, including POE/POU treatment devices and bottled water supplies, which are approved by the installation commander.

C3.3.2.11. <u>Filter Backwash Requirements</u>. To prevent microbes and other contaminants from passing through and into finished drinking water, DoD PWSs will ensure that recycled streams (i.e., recycled filter backwash water, sludge thickener supernatant, and liquids from dewatering processes) are treated by direct and conventional filtration processes. This requirement only applies to DoD PWSs that:

C3.3.2.11.1. Use surface water or GWUDISW;

C3.3.2.11.2. Use direct or conventional filtration processes; and

C3.3.2.11.3. Recycle spent filter backwash water, sludge thickener supernatant, or liquids from dewatering processes.

C3.3.3. <u>Notification Requirements</u>. When a DoD water system is out of compliance as set forth in the preceding criteria, the appropriate DoD medical authority and installation personnel (U.S. and Japanese) will be notified. The notice will provide a clear and readily understandable explanation of the violation, any potential adverse health effects, the population at risk, the steps being taken to correct the violation, the necessity for seeking an alternative water supply, if any, and any preventive measures the consumer should take until the violation is corrected. The appropriate DoD medical authority will coordinate notification of the appropriate GoJ authorities in cases where off-installation populations are at risk.

C3.3.4. <u>System Operator Requirements</u>. DoD installations will ensure that personnel are appropriately trained to operate DoD water systems.

Table C3.T1. Surface Water Treatment Requirements

1. Unfiltered Systems

- a. Systems which use unfiltered surface water or GUDISW will analyze the raw water for total coliforms or fecal coliforms at least weekly and for turbidity at least daily, and must continue as long as the unfiltered system is in operation. If the total coliforms and/or fecal coliforms exceed 100/100 milliliters (mL) and 20/100 mL, respectively, in excess of 10% of the samples collected in the previous 6 months, appropriate filtration must be applied. Appropriate filtration must also be applied if turbidity of the source water immediately prior to the first or only point of disinfectant application exceeds 5 Nephelometric Turbidity Units (NTU).
- b. Disinfection must achieve at least 99.9% (3-log) inactivation of *Giardia lamblia* cysts and 99.99% (4-log) inactivation of viruses by meeting applicable CT values, as shown in Tables C3.T11 through C3.T24.
- c. Disinfection systems must have redundant components to ensure uninterrupted disinfection during operational periods.
- d. Disinfectant residual monitoring immediately after disinfection is required once every 4 hours that the system is in operation. Disinfectant residual measurements in the distribution system will be made at the same times as total coliforms are sampled.
- e. Disinfectant residual of water entering the distribution system cannot be < 0.2 mg/L for more than 4 hours.
- f. Water in a distribution system with a heterotrophic bacteria concentration \leq 500/mL measured as heterotrophic plate count is considered to have a detectable disinfectant residual for the purpose of determining compliance with the Surface Water Treatment Requirements.
- g. If disinfectant residuals in the distribution system are undetected in more than 5% of monthly samples for 2 consecutive months, appropriate filtration must be implemented.

2. Filtered Systems

- a. Filtered water systems will provide a combination of disinfection and filtration that achieves a total of 99.9% (3-log) removal of *Giardia lamblia* cysts and 99.99% (4-log) removal of viruses.
- b. The turbidity of filtered water will be monitored at least once every 4 hours. The turbidity of filtered water for direct and conventional filtration systems will not exceed 0.5 NTU (1 NTU for slow sand and diatomaceous earth filters) in 95% of the analyses in a month, with a maximum of 5 NTU.
- c. Disinfection must provide the remaining log-removal of *Giardia lamblia* cysts and viruses not obtained by the filtration technology applied.*
- d. Disinfection residual maintenance and monitoring requirements are the same as those for unfiltered systems.
- *Proper conventional treatment typically removes 2.5-log *Giardia*/ 2.0-log viruses. Proper direct filtration and diatomaceous earth filtration remove 2.0-log *Giardia*/ 1.0-log viruses. Slow sand filtration removes typically removes 2.0-log *Giardia*/ 2.0-log viruses. Less log-removal may be assumed if treatment is not properly applied.

3. <u>SW or GWUDISW systems</u> will provide at least 99% (2-log) removal of *Cryptosporidium*. A system is considered to be compliant with the *Cryptosporidium* removal requirements if:

- a. For conventional and direct filtration systems, the turbidity level of the system's combined filter effluent water does not exceed 0.3 NTU in at least 95% of the measurements taken each month and at no time exceeds 1 NTU.
- b. For slow sand and diatomaceous earth filtration plants, the turbidity level of the system's combined filter effluent water does not exceed 1 NTU in at least 95% of measurements taken each month and at no time exceeds 5 NTUs.
- c. For alternative systems, the system demonstrates to the appropriate medical authority that the alternative filtration technology, in combination with disinfection treatment, consistently achieves 3-log removal and/or inactivation of *Giardia lamblia* cysts, 4-log removal and/or inactivation of viruses, and 2-log removal of *Cryptosporidium* oocysts.
- d. For unfiltered systems, the system continues to meet the source water monitoring requirements noted in 1a above to remain unfiltered.

4. <u>Individual Filter Effluent Monitoring</u>. Conventional or direct filtration systems must continuously monitor (every 15 minutes) the individual filter turbidity for each filter used at the system. Systems with two or fewer filters may monitor combined filter effluent turbidity continuously, in lieu of individual filter turbidity monitoring. If a system exceeds 1.0 NTU in two consecutive measurements for 3 months in a row (for the same filter), the installation must conduct a self assessment of the filter within 14 days. The self-assessment must include at least the following components: assessment of filter performance; development of a filter profile; identification and prioritization of factors limiting filter performance; assessment of the applicability of corrections; and preparation of a self-assessment report. If a system exceeds 2.0 NTU (in two consecutive measurements 15 minutes apart) for two months in a row, a Comprehensive Performance Evaluation (CPE) must be conducted within 90 days by a third party.

5. <u>Covers for Finished Water Storage Facilities</u>. Installations must physically cover all finished water reservoirs, holding tanks, or storage water facilities.

Population Served	Number of Samples ¹	Population Served	Number of Samples ¹
25 to 1,000 ²	1	59,001 to 70,000	70
1,001 to 2,500	2	70,001 to 83,000	80
2,501 to 3,300	3	83,001 to 96,000	90
3,301 to 4,100	4	96,001 to 130,000	100
4,101 to 4,900	5	130,001 to 220,000	120
4,901 to 5,800	6	220,001 to 320,000	150
5,801 to 6,700	7	320,001 to 450,000	180
6,701 to 7,600	8	450,001 to 600,000	210
7,601 to 8,500	9	600,001 to 780,000	240
8,501 to 12,900	10	780,001 to 970,000	270
12,901 to 17,200	15	970,001 to 1,230,000	300
17,201 to 21,500	20	1,230,001 to 1,520,000	330
21,501 to 25,000	25	1,520,001 to 1,850,000	360
25,001 to 33,000	30	1,850,001 to 2,270,000	390
33,001 to 41,000	40	2,270,001 to 3,020,000	420
41,001 to 50,000	50	3,020,001 to 3,960,000	450
50,001 to 59,000	60	3,960,001 or more	480

Table C3.T2. Total Coliform Monitoring Frequency

Notes:

1. Minimum Number of Routine Samples Per Month

2. A non-community water system using groundwater and serving 1,000 or less people may monitor once in each calendar quarter during which the system provides water provided a sanitary survey conducted within the last 5 years shows the system is supplied solely by a protected groundwater source and free of sanitary defects.

Systems that use groundwater, serve < 4,900 people, and collect samples from different sites, may collect all samples on a single day. All other systems must collect samples at regular intervals throughout the month.

Contaminant		MCL
Arsenic ¹	0.010	mg/L
Antimony ¹	0.006	mg/L
Asbestos ¹	7 x 10 ⁶	fibers/L (longer than 10 um)
Barium	2.0	mg/L
Beryllium ¹	0.004	mg/L
Cadmium ¹	0.005	mg/L
Chromium ¹	0.1	mg/L
Cyanide ¹	0.2	mg/L (as free cyanide)
Fluoride ²	4.0	mg/L
Mercury ¹	0.002	mg/L
Nickel ¹	0.1	mg/L
Nitrate ³	10	mg/L (as N)
Nitrite ³	1	mg/L (as N)
Total Nitrite and Nitrate ³	10	mg/L (as N)
Selenium ¹	0.05	mg/L
Sodium ⁴	N/A	
Thallium	0.002	mg/L

Table C3.T3. Inorganic Chemical MCLs

Notes:

1. MCLs apply to CWS and NTNCWS.

2. Fluoride also has a secondary MCL at 2.0 mg/L. MCL applies only to CWS.

3. MCLs apply to CWS, NTNCWS, and TNCWS.

4. No MCL established. Monitoring is required so contamination levels can be made available on request. Sodium levels shall be reported to the DoD medical authority upon receipt of analysis.

	Groundwater Baseline	Surface Water Baseline	Trigger That Increases	Reduced
Contaminant	Requirement ¹	Requirement	Monitoring ²	Monitoring
Arsenic				
Antimony				
Barium				
Beryllium				
Cadmium				
Chromium				
Cyanide	1 sample / 3 yr	Annual sample	>MCL	
Fluoride				
Mercury				
Nickel				
Selenium				
Thallium				
Sodium				
Asbestos ³	1 sample every 9 years	1 sample every 9 years	>MCL	Yes
Total Nitrate/Nitrite	Annual sample	Quarterly	>50% Nitrite MCL	
Nitrate	Annual sample ⁴	Quarterly ⁴	>50% MCL ⁵	Yes ⁶
Nitrite	Annual sample ⁴	Quarterly ⁴	>50% MCL ⁵	Yes ⁷
Corrosivity ⁸	Once	Once		

Table C3.T4. Inorganics Monitoring Requirements

Notes:

1. Samples shall be taken as follows: groundwater systems shall take a minimum of 1 sample at every entry point to the distribution system which is representative of each well after treatment; surface water systems shall take at least 1 sample at every entry point to the distribution system after any application of treatment or in the distribution system at a point which is representative of each source after the treatment.

- 2. Increased monitoring requires a minimum of 2 quarterly samples (1 sample per quarter for 2 consecutive quarters) for groundwater systems, and at least 4 quarterly samples (1 sample per quarter for 4 consecutive quarters) for surface water systems.
- 3. Necessity for analysis is predicated upon a sanitary survey conducted by the PWS.
- 4. Any sampling point with an analytical value ≥ 0.5 mg/L as N, (50% of the Nitrite MCL) must begin sampling for nitrate and nitrite separately. Since nitrite readily converts to nitrate, a system can conclude that if the total nitrate/nitrite value of a sample is less than half of the nitrite MCL, then the value of nitrite in the sample would also be below half of its MCL.
- 5. Increased quarterly monitoring shall be undertaken for nitrate and nitrate if a sample is >50% of the MCL.

6. The appropriate DoD medical authority may reduce repeat sampling frequency for surface water systems to annually if after 1 year results are <50% of MCL.

- 7. The appropriate DoD medical authority may reduce repeat sampling frequency to 1 annual sample if results are 50% of MCL.
- 8. Two samples (1 mid-winter and 1 mid-summer) will be collected at the entry point of the distribution system for systems using surface water and GWUDISW. One sample will be collected for systems using only groundwater. Corrosivity characteristics of the water shall include measurements of pH, calcium, hardness, alkalinity, temperature, total dissolved solids, and calculation of the Langelier Saturation Index.

Annual Average of Maximum		Control Limits (mg/L)	
Daily Air Temperatures (°F)	Lower	Optimum	Upper
50.0 - 53.7	0.9	1.2	1.7
53.8 - 58.3	0.8	1.1	1.5
58.4 - 63.8	0.8	1.0	1.3
63.9 - 70.6	0.7	0.9	1.2
70.7 - 79.2	0.7	0.8	1.0
79.3 - 90.5	0.6	0.7	0.8

Table C3.T5. Recommended Fluoride Concentrations at Different Temperatures

Table C3.T6. Monitoring Requirements for Lead and Copper Water Quality Parameters

	No. of Sites for Standard	No. of Sites for Reduced	No. of Sites for Water Quality
Population Served	Monitoring ^{1, 2}	Monitoring ³	Parameters ⁴
>100,000	100	50	25
10,001 - 100,000	60	30	10
3,301 - 10,000	40	20	3
501 - 3,300	20	10	2
101 - 500	10	5	1
<100	5	5	1

Notes:

1. Every 6 months for lead and copper.

- 2. Sampling sites shall be based on a hierarchical approach. For CWS, priority will be given to single family residences which contain copper pipe with lead solder installed after 1982, contain lead pipes, or are served by lead service lines; then, structures, including multi-family residences with the foregoing characteristics; and finally, residences and structures with copper pipe with lead solder installed before 1983. For NTNCWS, sampling sites will consist of structures that contain copper pipe with lead solder installed after 1982, contain lead pipes, and/or are served by lead service lines. First draw samples will be collected from a cold water kitchen or bathroom tap; non-residential samples will be taken at an interior tap from which water is typically drawn for consumption.
- 3. Annually for lead and copper if action levels are met during each of 2 consecutive 6-month monitoring periods. Any small or medium-sized system (<50,000) that meets the lead and copper action levels during 3 consecutive years may reduce the monitoring for lead and copper from annually to once every 3 years. Annual or triennial sampling will be conducted during the 4 warmest months of the year.
- 4. This monitoring must be conducted by all large systems (>50,000). Small and medium sized systems must monitor water quality parameters when action levels are exceeded. Samples will be representative of water quality throughout the distribution system and include a sample from the entry to the distribution system. Samples will be taken in duplicate for pH, alkalinity, calcium, conductivity or total dissolved solids, and water temperatures to allow a corrosivity determination (via a Langelier saturation index or other appropriate saturation index); additional parameters are orthophosphate when a phosphate inhibitor is used and silica when a silicate inhibitor is used.

Synthetic Organic Chemical	mg/L	Detection limit, mg/L
	esticides/PCBs	0.0002
Alachlor	0.002	
Aldicarb	0.003	0.0005
Aldicarb sulfone	0.003	0.0008
Aldicarb sulfoxide	0.004	0.0005
Atrazine	0.003	0.0001
Benzo[a]pyrene	0.0002	0.0000
Carbofuran	0.04	0.0009
Chlordane	0.002	0.0002
Dalapon	0.2	
2,4-D	0.07	0.0001
1,2-Dibromo-3-chloropropane (DBCP)	0.0002	0.00002
Di (2-ethylhexyl) adipate	0.4	
Di (2-ethylhexyl) phthalate	0.006	
Dinoseb	0.007	
Diquat	0.02	
Endrin	0.002	0.00002
Endothall	0.1	
Ethylene dibromide (EDB)	0.00005	0.00001
Glyphosphate	0.7	
Heptachlor	0.0004	0.00004
Heptachlorepoxide	0.0002	0.00002
Hexachlorobenzene	0.001	
Hexachlorocyclopentadiene	0.05	
Lindane	0.0002	0.00002
Methoxychlor	0.04	0.0001
Oxamyl (Vydate)	0.2	
PCBs (as decachlorobiphenyls)	0.0005	0.0001
Pentachlorophenol	0.001	0.00004
Picloram	0.5	
Simazine	0.004	
2,3,7,8-TCDD (Dioxin)	0.0000003	
Toxaphene	0.003	0.001
2,4,5-TP (Silvex)	0.05	0.0002
	Organic Chemicals	
Benzene	0.005	0.0005
Carbon tetrachloride	0.005	0.0005
o-Dichlorobenzene	0.6	0.0005
cis-1,2-Dichloroethylene	0.07	0.0005
trans-1,2-Dichloroethylene	0.1	0.0005
1,1-Dichloroethylene	0.007	0.0005
1,1,1-Trichloroethane	0.20	0.0005
1.2-Dichloroethane	0.005	0.0005
Dichloromethane	0.005	
1,1,2-Trichloroethane	0.005	
1,2,4-Trichloro-benzene	0.005	
1,2-Dichloropropane	0.005	0.0005
Ethylbenzene	0.005	0.0005
Monochlorobenzene	0.1	0.0005
MONOCHIOLOUCHZOHC	0.075	0.0005

Table C3.T7. Synthetic Organic Chemical MCLs

Table C3.T7.	Synthetic	Organic	Chemical MCLs
--------------	-----------	---------	---------------

Synthetic Organic Chemical	mg/L	Detection limit, mg/L		
Styrene	0.1	0.0005		
Tetrachloroethylene	0.005	0.0005		
Trichloroethylene	0.005	0.0005		
Toluene	1.0	0.0005		
Vinyl chloride	0.002	0.0005		
Xylene (total)	10	0.0005		
	Other Organics			
Acrylamide	0.05% dosed at 1 ppm ¹			
Epihydrochlorin	treatment technique 0.01% d	treatment technique 0.01% dosed at 20 ppm ¹		

Note:

1. Only applies when adding these polymer flocculants to the treatment process. No sampling is required, the system certifies that dosing is within specified limits.

Table C3.T8.	Synthetic	Organic	Chemical	Monitoring Requirements
	2	0		

Contaminant	Base Requirement ¹		Trigger for more	Reduced
	Groundwater	Surface water	monitoring ²	monitoring
VOCs	Quarterly	Quarterly	>0.0005 mg/L	Yes ^{3, 4}
Pesticides/PCBs	4 quarterly samples/3 years during most likely period for their presence		>Detection limit ⁵	Yes ^{4,6}

Notes:

1. Groundwater systems shall take a minimum of 1 sample at every entry point which is representative of each well after treatment; surface water systems will take a minimum of 1 sample at every entry point to the distribution system at a point which is representative of each source after treatment. (4 quarterly samples/ 3 years equates to 1 sample per quarter over 4 consecutive quarters within a period of 3 years (4 samples every 3 years))

2. Increased monitoring requires a minimum of 2 quarterly samples (1 sample per quarter for 2 consecutive quarters) for groundwater systems, and at least 4 quarterly samples (1 sample per quarter for 4 consecutive quarters) for surface water systems.

3. Repeat sampling frequency may be reduced to annually after 1 year of no detection, and every 3 years after 3 rounds of no detection.

4. Monitoring frequency may be reduced if warranted based on a sanitary survey of the PWS.

5. Detection limits noted in Table C3.T7, or as determined by the best available testing methods.

6. Repeat sampling frequency may be reduced to the following if after one round of no detection: systems >3,300 reduce to a minimum of 2 quarterly samples in 1 year during each repeat compliance period (1 sample per quarter over 2 consecutive quarters within 1 year during a period of 3 years), or systems <3,300 reduce to a minimum of 1 sample every 3 years.

7. Compliance is based on an annual running average for each sample point for systems monitoring quarterly or more frequently; for systems monitoring annually or less frequently, compliance is based on a single sample, unless the appropriate DoD medical authority requests a confirmation sample. A system is out of compliance if any contaminant exceeds the MCL.

Source Water Type	Population Served by	Analyte & Frequency of Samples	Number of
	System		Samples
Surface Water (SW) or	10,000 or more	TTHM & HAA5 – Quarterly ^{1,2}	4 ^{1,2,3}
Groundwater Under the Direct	Serving 500 to 9,999	TTHM & HAA5 - Quarterly ⁴	1 ^{5,6}
Influence of Surface Water	499 or less	TTHM & HAA5 - Yearly	1 ^{7,8}
(GWUDISW)			
Ground Water (GW)	10,000 or more	TTHM & HAA5 - Quarterly ⁹	$1^{10,11}$
Ground Water (GW)	9,999 or less	TTHM & HAA5 - Yearly ¹²	$1^{13,14}$
		Chlorite - Daily &	
		Monthly ^{15,16,17,18}	
		Bromate - Monthly ^{19,20}	
ALL		Chlorine ^{21,22}	
		Chloramines ^{23,24}	
		Chlorine Dioxide ^{25,26,27}	
		TOC ²⁸	

Table C3.T9	Disinfectant/E	Disinfection	Byproducts	Monitoring	Requirements

Notes:

- 1. For TTHM and HAA5, a DoD system using surface water or GWUDISW that treats its water with a chemical disinfectant must collect the number of samples listed above. One of the samples must be taken at a location in the distribution system reflecting the maximum residence time of water in the system. The remaining samples shall be taken at representative points in the distribution system.
- 2. To be eligible for reduced monitoring, a system must meet all of the following conditions: a) the annual average for TTHM is no more than 0.040 mg/L; b) the annual average for HAA5 is no more than 0.030 mg/L; c) at least 1 year of routine monitoring has been completed; and d) the annual average source water total organic carbon level is no more than 4.0 mg/L prior to treatment. Systems may then reduce monitoring of TTHM and HAA5 to 1 sample per treatment plant per quarter. Systems remain on the reduced schedule as long as the average of all samples taken in the year is no more than 0.060 mg/L for TTHM and 0.045 mg/L for HAA5. Systems that do not meet these levels must revert to routine monitoring the following quarter.
- 3. A system is noncompliant if the running annual average for any quarter exceeds the TTHM MCL, 0.080 mg/L or the HAA5 MCL, 0.060 mg/L.
- 4. One sample must be collected per treatment plant in the system at the point of maximum residence time in the distribution system.
- 5. Systems meeting the eligibility requirements in Note 2 may reduce monitoring frequency to 1 sample per treatment plant per year. Sample must be taken at the point of maximum residence time in the distribution system and during the month of warmest water temperature. Systems remain on the reduced schedule as long as the average of all samples taken in the year is no more than 0.060 mg/L for TTHM and 0.045 mg/L for HAA5. Systems that do not meet these levels must revert to routine (quarterly) monitoring the following quarter.
- 6. A system is noncompliant if the annual average of all samples taken that year exceeds the TTHM MCL, 0.080 mg/L or the HAA5 MCL, 0.060 mg/L.
- 7. Sample must be taken at the point of maximum residence time in the distribution system and during the month of warmest water temperature. If annual sample exceeds MCL (TTHM or HAA5) the system must increase monitoring to 1 sample per treatment plant per quarter at the point of maximum residence time. The system may return to routine monitoring if the annual average of quarterly samples is no more than 0.060 mg/L for TTHM and 0.045 mg/L for HAA5.
- 8. No reduced monitoring schedule is available. Noncompliance exists when the annual sample (or average of annual samples is conducted) exceeds the TTHM MCL, 0.080 mg/L or if the HAA5 concentration exceeds the MCL, 0.060 mg/L.
- 9. For TTHM and HAA5, a DoD system using only ground water NOT under the influence of surface water that treats its water with a chemical disinfectant must collect the number of samples listed above. Samples must be taken at a location in the distribution system reflecting the maximum residence time of water in the system.

Table C3.T9. Disinfectant/Disinfection Byproducts Monitoring Requirements (continued)

- 10. System may reduce monitoring to 1 sample per treatment plant per year if the system meets all of the following conditions: a) the annual average for TTHM is no more than 0.040 mg/L; b) the annual average for HAA5 is no more than 0.030 mg/L; and c) at least 1 year of routine monitoring has been completed. Sample must be taken at the point of maximum residence time in the distribution system and during the month of warmest water temperature. Systems remain on the reduced schedule as long as the average of all samples taken in the year is no more than 0.060 mg/L for TTHM and 0.045 mg/L for HAA5. Systems that do not meet these levels must revert to routine monitoring the following quarter.
- 11. Noncompliance exists when the annual average of quarterly averages of all samples, compounded quarterly, exceeds the TTHM MCL, 0.080 mg/L or the HAA5 the MCL, 0.060 mg/L.
- 12. For TTHM and HAA5, a DoD system using only ground water NOT under the influence of surface water that treats its water with a chemical disinfectant must collect the number of samples listed above. One sample per treatment plant must be taken at a location in the distribution system reflecting the maximum residence time of water in the system and during the month of warmest water temperature. If the sample exceeds the MCL, the system must increase monitoring to quarterly.
- 13. System may reduce monitoring to 1 sample per 3-year monitoring cycle if the system meets all the following conditions: a) the annual average for TTHM is no more than 0.040 mg/L; b) the annual average for HAA5 is no more than 0.030 mg/L; and c) at least 1 year of routine monitoring has been completed. Sample must be taken at the point of maximum residence time in the distribution system and during the month of warmest water temperature. Systems remain on the reduced schedule as long as the average of all samples taken in the year is no more than 0.060 mg/L for TTHM, and 0.045 mg/L for HAA5. Systems that do not meet these levels must revert to routine monitoring. Systems on increased monitoring may return to routine monitoring if the annual average of quarterly samples does not exceed 0.060 mg/L for TTHM and 0.045 mg/L for HAA5.
- 14. Noncompliance exists when the annual sample (or average of annual samples) exceeds the TTHM MCL, 0.080 mg/L or the HAA5 the MCL, 0.060 mg/L.
- 15. For systems using chlorine dioxide for disinfection or oxidation, daily samples are taken for chlorite at the entrance to the distribution system for chlorite. The monthly chlorite samples are collected within the distribution system, as follows: one as close as possible to the first customer, one in a location representative of average residence time, and one as close as possible to the end of the distribution system (reflects maximum residence time within the distribution system).
- 16. Additional monitoring is required when a daily sample exceeds the chlorite MCL, 1.0 mg/L. A 3-sample set (following the monthly sample set protocol) is required to be collected the following day. Further distribution system monitoring will not be required in that month unless the chlorite concentration at the entrance to the distribution system again exceeds the MCL, 1.0 mg/L.
- 17. For chlorite, systems may reduce routine distribution system monitoring from monthly to quarterly if the chlorite concentration in all samples taken in the distribution system is below the MCL, 1.0 mg/L, for a period of 1 year and the system has not been required to conduct any additional monitoring. Daily samples must still be collected. Monthly sample set monitoring resumes when if any one daily sample exceeds the MCL, 1.0 mg/L.
- 18. Noncompliance for chlorite exists if the average concentration of any 3-sample set (i.e., 1 monthly sample set from within the distribution system) exceeds the MCL, 1.0 mg/L.
- 19. Systems using ozone for disinfection or oxidation are required to take at least 1 sample per month from the entrance to the distribution system for each treatment plant in the system using ozone under normal operating conditions. Systems may reduce monitoring from monthly to once per quarter if the system demonstrates that the yearly average raw water bromide concentration is <0.05 mg/L based upon monthly measurements for 1 year.
- 20. Noncompliance is based on a running yearly average of samples, computed quarterly, that exceeds the MCL, 0.01 mg/L.
- 21. Chlorine samples must be measured at the same points in the distribution system and at the same time as total coliforms. Not withstanding the MRDL, operators may increase residual chlorine levels in the distribution system to a level and for a time necessary to protect public health to address specific microbiological contamination problems.
- 22. Noncompliance is based on a running yearly average of monthly averages of all samples, computed quarterly, exceeds the MRDL, 4.0 mg/L.

Table C3.T9. Disinfectant/Disinfection Byproducts Monitoring Requirements (continued)

- 23. Chloramine samples (as either total chlorine or combined chlorine) must be measured at the same points in the distribution system and at the same time as total coliforms. Not withstanding the MRDL, operators may increase residual chlorine levels in the distribution system to a level and for a time necessary to protect public health to address specific microbiological contamination problems.
- 24. Noncompliance is based on a running yearly average of monthly averages of all samples, computed quarterly, exceeds the MRDL, 4.0 mg/L.
- 25. For systems using chlorine dioxide for disinfection or oxidation, samples must be taken daily at the entrance to the distribution system. If the MRDL, 0.8 mg/L, is exceeded, 3 additional samples must be taken the following day as follows: one as close as possible to the first customer, one in a location representative of average residence time, and one as close as possible to the end of the distribution system (reflects maximum residence time within the distribution system). Systems not using booster chlorination systems after the first customer must take 3 samples in the distribution system as close as possible to the first customer at intervals of not less than 6 hours.
- 26. If any daily sample from the distribution system exceeds the MRDL and if 1 or more of the 3 samples taken the following day from within the distribution system exceeds the MRDL, the system is in violation of the MRDL and must issue public notification in accordance with paragraph C3.3.3. If any 2 consecutive daily samples exceed the MRDL but none of the distribution samples exceed the MRDL, the system is in violation of the MRDL. Failure to monitor at the entrance to the distribution system on the day following an exceedance of the chlorine dioxide MRDL is also an MRDL violation.
- 27. The MRDL for chlorine dioxide may NOT be exceeded for short periods to address specific microbiological contamination problems.
- 28. Systems that use conventional filtration treatment must monitor each treatment plant water source for TOC on a monthly basis. Samples must be taken from the source water prior to treatment and the treated water not later than the point of combined filter effluent turbidity monitoring. Source water alkalinity must also be monitored at the same time. Surface water and GWUDISW systems with average treated water TOC of <2.0 mg/L for 2 consecutive years, or <1.0 mg/L for 1 year, may reduce TOC and alkalinity to 1 paired sample per plant per quarter.

Contaminant	MCL
Gross Alpha ¹	15 pCi/L
Combined Radium-226 and -228	5 pCi/L
Uranium	30 µg/L
Beta Particle and Photon Radioactivity ²	4 mrem/year

Table C3.T10. Radionuclide MCLs and Monitoring Requirements

Notes:

1. Gross alpha activity includes radium-226, but excludes radon and uranium.

2. Beta particle and photon activity is also referred to as gross beta activity from manmade radionuclides. The installation is only required to sample for beta and photon radioactivity when the water system has been designated as vulnerable. The determination on whether the water system is vulnerable is based on the vulnerability assessment as required by JEGS C3.3.1.14.

Monitoring Requirements:

All CWSs using ground water, surface water, or systems using both ground and surface water must sample at every point (i.e., sampling points) to the distribution system that is representative of all sources being used under normal operating conditions.

For gross alpha activity and radium-226 and radium-228, and uranium systems will be tested once every 4 years. Testing will be conducted using an annual composite of 4 consecutive quarterly samples or the average of 4 samples obtained at quarterly intervals at a representative point in the distribution system.

Gross alpha activity may be analyzed alone if activity is <5 picocuries per liter (pCi/L). Where radium-228 may be present, radium-226 and/or -228 analyses should be performed when activity is >2 pCi/L. If the average annual concentration is less than half the MCL, analysis of a single sample (1 sample every 4 years) may be substituted for the quarterly sampling procedure. A system with two or more sources having different concentrations of radioactivity shall monitor source water in addition to water from a free-flowing tap. If the installation introduces a new water source, these contaminants will be monitored within the first year after introduction.

Monitoring for beta particle and photon radioactivity is only required when the water system has been designated as vulnerable. Systems must collect quarterly samples for beta emitters and annual samples for tritium and strontium-90 at each entry point to the distribution system. The MCL is an annual dose equivalent to the total body or any internal organ from manmade radionuclides. If the gross beta particle activity minus the naturally occurring potassium-40 beta particle activity exceeds the appropriate screening level (50 pCi/L), an analysis of the sample must be performed to identify the major radioactive constituents present in the sample and the appropriate dose must be calculated and summed to determine compliance with MCL. Dose must also be calculated and combined for measured levels of tritium and strontium to determine compliance.

Chlorine			pН						pH =						pH =						pH =			
Concentration			og Inac						og Inac						og Inac							tivation		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
≤0.4	23	46	69	91	114	137	27	54	82	109	136	163	33	65	98	130	163	195	40	79	119	158	198	237
0.6	24	47	71	94	118	141	28	56	84	112	140	168	33	67	100	133	167	200	40	80	120	159	199	239
0.8	24	48	73	97	121	145	29	57	86	115	143	172	34	68	103	137	171	205	41	82	123	164	205	246
1	25	49	74	99	123	148	29	59	88	117	147	176	35	70	105	140	175	210	42	84	127	169	211	253
1.2	25	51	76	101	127	152	30	60	90	120	150	180	36	72	108	143	179	215	43	86	130	173	216	259
1.4	26	52	78	103	129	155	31	61	92	123	153	184	37	74	111	147	184	221	44	89	133	177	222	266
1.6	26	52	79	105	131	157	32	63	95	126	158	189	38	75	113	151	188	226	46	91	137	182	228	273
1.8	27	54	81	108	135	162	32	64	97	129	161	193	39	77	116	154	193	231	47	93	140	186	233	279
2	28	55	83	110	138	165	33	66	99	131	164	197	39	79	118	157	197	236	48	95	143	191	238	286
2.2	28	56	85	113	141	169	34	67	101	134	168	201	40	81	121	161	202	242	50	99	149	198	248	297
2.4	29	57	86	115	143	172	34	68	103	137	171	205	41	82	124	165	206	247	50	99	149	199	248	298
2.6	29	58	88	117	146	175	35	70	105	139	174	209	42	84	126	168	210	252	51	101	152	203	253	304
2.8	30	59	89	119	148	178	36	71	107	142	178	213	43	86	129	171	214	257	52	103	155	207	258	310
3	30	60	91	121	151	181	36	72	109	145	181	217	44	87	131	174	218	261	53	105	158	211	263	316
Chlorine			pH						pH =						pH =									
Concentration			og Inac						og Inac			2.0			og Inac									
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5			1.0	1.5	2.0	2.5							
≤0.4	10											3.0	0.5			1		3.0						
	46	92	139	185	231	277	55	110	165	219	274	329	65	130	195	260	325	390						
0.6	48	95	143	191	238	286	57	114	171	219 228	274 285	329 342	65 68	130 136	204	271	325 339	390 407						
0.6	48 49	95 98	143 148	191 197	238 246	286 295	57 59	114 118	171 177	219 228 236	274 285 295	329 342 354	65 68 70	130 136 141	204 211	271 281	325 339 352	390 407 422						
0.8	48 49 51	95 98 101	143 148 152	191 197 203	238 246 253	286 295 304	57 59 61	114 118 122	171 177 183	219 228 236 243	274 285 295 304	329 342 354 365	65 68 70 73	130 136 141 146	204 211 219	271 281 291	325 339 352 364	390 407 422 437						
0.8 1 1.2	48 49 51 52	95 98 101 104	143 148 152 157	191 197 203 209	238 246 253 261	286 295 304 313	57 59 61 63	114 118 122 125	171 177 183 188	219 228 236 243 251	274 285 295 304 313	329 342 354 365 376	65 68 70 73 75	130 136 141 146 150	204 211 219 226	271 281 291 301	325 339 352 364 376	390 407 422 437 451						
0.8	48 49 51 52 54	95 98 101	143 148 152 157 161	191 197 203 209 214	238 246 253 261 268	286 295 304 313 321	57 59 61 63 65	114 118 122 125 129	171 177 183 188 194	219 228 236 243 251 258	274 285 295 304 313 323	329 342 354 365 376 387	65 68 70 73 75 77	130 136 141 146 150 155	204 211 219 226 232	271 281 291 301 309	325 339 352 364 376 387	390 407 422 437 451 464						
0.8 1 1.2 1.4 1.6	48 49 51 52 54 55	95 98 101 104 107 110	143 148 152 157 161 165	191 197 203 209 214 219	238 246 253 261 268 274	286 295 304 313 321 329	57 59 61 63 65 66	114 118 122 125 129 132	171 177 183 188 194 199	219 228 236 243 251 258 265	274 285 295 304 313 323 331	329 342 354 365 376 387 397	65 68 70 73 75 77 80	130 136 141 146 150 155 159	204 211 219 226 232 239	271 281 291 301 309 318	325 339 352 364 376 387 398	390 407 422 437 451 464 477						
0.8 1 1.2 1.4	48 49 51 52 54 55 56	95 98 101 104 107	143 148 152 157 161	191 197 203 209 214 219 225	238 246 253 261 268 274 282	286 295 304 313 321	57 59 61 63 65 66 68	114 118 122 125 129 132 136	171 177 183 188 194	219 228 236 243 251 258 265 271	274 285 295 304 313 323 331 339	329 342 354 365 376 387 397 407	65 68 70 73 75 77 80 82	130 136 141 146 150 155 159 163	204 211 219 226 232 239 245	271 281 291 301 309 318 326	325 339 352 364 376 387 398 408	390 407 422 437 451 464 477 489						
0.8 1 1.2 1.4 1.6 1.8 2	48 49 51 52 54 55 56 58	95 98 101 104 107 110 113 115	143 143 148 152 157 161 165 169 173	191 197 203 209 214 219 225 231	238 246 253 261 268 274 282 288	286 295 304 313 321 329 338 346	57 59 61 63 65 66 68 70	114 118 122 125 129 132 136 139	171 177 183 188 194 199 204 209	219 228 236 243 251 258 265 271 278	274 285 295 304 313 323 331 339 348	329 342 354 365 376 387 397 407 417	65 68 70 73 75 77 80 82 83	130 136 141 146 150 155 159 163 167	204 211 219 226 232 239 245 250	271 281 291 301 309 318 326 333	325 339 352 364 376 387 398 408 417	390 407 422 437 451 464 477 489 500						
0.8 1 1.2 1.4 1.6 1.8 2 2.2	48 49 51 52 54 55 56 58 59	95 98 101 104 107 110 113 115 118	143 148 152 157 161 165 169 173 177	191 197 203 209 214 219 225 231 235	238 246 253 261 268 274 282 288 294	286 295 304 313 321 329 338 346 353	57 59 61 63 65 66 68 70 71	114 118 122 125 129 132 136 139 142	171 177 183 188 194 199 204 209 213	219 228 236 243 251 258 265 271 278 284	274 285 295 304 313 323 331 339 348 355	329 342 354 365 376 387 397 407 417 426	65 68 70 73 75 77 80 82 83 83	130 136 141 146 150 155 159 163 167 170	204 211 219 226 232 239 245 250 256	271 281 291 301 309 318 326 333 341	325 339 352 364 376 387 398 408 417 426	390 407 422 437 451 464 477 489 500 511						
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4	48 49 51 52 54 55 56 58	95 98 101 104 107 110 113 115	143 143 148 152 157 161 165 169 173	191 197 203 209 214 219 225 231	238 246 253 261 268 274 282 288	286 295 304 313 321 329 338 346	57 59 61 63 65 66 68 70 71 73	114 118 122 125 129 132 136 139	171 177 183 188 194 199 204 209	219 228 236 243 251 258 265 271 278	274 285 295 304 313 323 331 339 348 355 363	329 342 354 365 376 387 397 407 417 426 435	65 68 70 73 75 77 80 82 83	130 136 141 146 150 155 159 163 167	204 211 219 226 232 239 245 250 256 261	271 281 291 301 309 318 326 333	325 339 352 364 376 387 398 408 417 426 435	390 407 422 437 451 464 477 489 500 511 522						
0.8 1 1.2 1.4 1.6 1.8 2 2.2	48 49 51 52 54 55 56 58 59	95 98 101 104 107 110 113 115 118	143 148 152 157 161 165 169 173 177	191 197 203 209 214 219 225 231 235	238 246 253 261 268 274 282 288 294	286 295 304 313 321 329 338 346 353	57 59 61 63 65 66 68 70 71 73 73 74	114 118 122 125 129 132 136 139 142	171 177 183 188 194 199 204 209 213	219 228 236 243 251 258 265 271 278 284	274 285 295 304 313 323 331 339 348 355	329 342 354 365 376 387 397 407 417 426	65 68 70 73 75 77 80 82 83 83	130 136 141 146 150 155 159 163 167 170	204 211 219 226 232 239 245 250 256	271 281 291 301 309 318 326 333 341	325 339 352 364 376 387 398 408 417 426	390 407 422 437 451 464 477 489 500 511 522 533						
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4	48 49 51 52 54 55 56 58 59 60	95 98 101 104 107 110 113 115 118 120	143 148 152 157 161 165 169 173 177 181	191 197 203 209 214 219 225 231 235 241	238 246 253 261 268 274 282 288 294 301	286 295 304 313 321 329 338 346 353 361	57 59 61 63 65 66 68 70 71 73	114 118 122 125 129 132 136 139 142 145	171 177 183 188 194 199 204 209 213 218	219 228 236 243 251 258 265 271 278 284 290	274 285 295 304 313 323 331 339 348 355 363	329 342 354 365 376 387 397 407 417 426 435	65 68 70 73 75 77 80 82 83 85 85 87	130 136 141 146 150 155 159 163 167 170 174	204 211 219 226 232 239 245 250 256 261	271 281 291 301 309 318 326 333 341 348	325 339 352 364 376 387 398 408 417 426 435	390 407 422 437 451 464 477 489 500 511 522						

Chlorine Concentration		L	pH og Inac	≤6 ctivation	s			L	pH = og Inac		s			L	pH = og Inac		s			L	pH = og Inaci	- 7.5 tivation	s		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	
≤0.4	16	32	49	65	81	97	20	39	59	78	98	117	23	46	70	93	116	139	28	55	83	111	138	166	
0.6	17	33	50	67	83	100	20	40	60	80	100	120	24	48	72	95	119	143	29	57	86	114	143	171	
0.8	17	34	52	69	86	103	20	41	61	81	102	122	24	49	73	97	122	146	29	58	88	117	146	175	
1	18	35	53	70	88	105	21	42	63	83	104	125	25	50	75	99	124	149	30	60	90	119	149	179	
1.2	18	36	54	71	89	107	21	42	64	85	106	127	25	51	76	101	127	152	31	61	92	122	153	183	
1.4	18	36	55	73	91	109	22	43	65	87	108	130	26	52	78	103	129	155	31	62	94	125	156	187	
1.6	19	37	56	74	93	111	22	44	66	88	110	132	26	53	79	105	132	158	32	64	96	128	160	192	
1.8	19	38	57	76	95	114	23	45	68	90	113	135	27	54	81	108	135	162	33	65	98	131	163	196	
2	19	39	58	77	97	116	23	46	69	92	115	138	28	55	83	110	138	165	33	67	100	133	167	200	
2.2	20	39	59	79	98	118	23	47	70	93	117	140	28	56	85	113	141	169	34	68	102	136	170	204	
2.4	20	40	60	80	100	120	24	48	72	95	119	143	29	57	86	115	143	172	35	70	105	139	174	209	
2.6	20	41	61	81	102	122	24	49	73	97	122	146	29	58	88	117	146	175	36	71	107	142	178	213	
2.8	21	41	62	83	103	124	25	49	74	99	123	148	30	59	89	119	148	178	36	72	109	145	181	217	
3	21	42	63	84	105	126	25	50	76	101	126	151	30	61	91	121	152	182	37	74	111	147	184	221	
Chlorine Concentration		т	pH og Inog		6		1	т	pH =		6			т	pH =		6						I		
Concentration	0.5	L 1.0	og Inac	tivation		3.0	0.5		og Inac	tivation		3.0	0.5	L 1.0	og Inac	tivation		3.0			L		L		
	0.5		T.		s 2.5 165	3.0 198	0.5 39	L 1.0 79	1.		s 2.5 197	3.0 236	0.5 47		T.		s 2.5 233	3.0 279	L		I				
Concentration (mg/L)		1.0	og Inac 1.5	tivation 2.0	2.5			1.0	og Inac 1.5	tivation 2.0	2.5			1.0	og Inac 1.5	tivation 2.0	2.5		L						
Concentration (mg/L) ≤0.4	33	1.0 66	og Inac 1.5 99	2.0 132	2.5 165	198	39	1.0 79	og Inac 1.5	tivation 2.0 157	2.5 197	236	47	1.0 93	og Inac 1.5 140	tivation 2.0 186	2.5 233	279							
Concentration (mg/L) ≤0.4 0.6	33 34	1.0 66 68	og Inac 1.5 99 102	2.0 132 136	2.5 165 170	198 204	39 41	1.0 79 81	og Inac 1.5 118 122	tivation 2.0 157 163	2.5 197 203	236 244	47 49	1.0 93 97	og Inac 1.5 140 146	tivation 2.0 186 194	2.5 233 243	279 291							
Concentration (mg/L) ≤0.4 0.6 0.8	33 34 35	1.0 66 68 70	og Inac 1.5 99 102 105	tivation 2.0 132 136 140	2.5 165 170 175	198 204 210	39 41 42	1.0 79 81 84	og Inac 1.5 118 122 126	tivation 2.0 157 163 168	2.5 197 203 210	236 244 252	47 49 50	1.0 93 97 100	og Inac 1.5 140 146 151	tivation 2.0 186 194 201	2.5 233 243 251	279 291 301							
Concentration (mg/L) ≤0.4 0.6 0.8 1	33 34 35 36	1.0 66 68 70 72	1.5 99 102 105 108	2.0 132 136 140 144	2.5 165 170 175 180	198 204 210 216	39 41 42 43	1.0 79 81 84 87	og Inac 1.5 118 122 126 130	tivation 2.0 157 163 168 173	2.5 197 203 210 217	236 244 252 260	47 49 50 52	1.0 93 97 100 104	og Inac 1.5 140 146 151 156	tivation 2.0 186 194 201 208	2.5 233 243 251 260	279 291 301 312							
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2	33 34 35 36 37	1.0 66 68 70 72 74 <th74< th=""> <th 74<<="" th=""><th>og Inac 1.5 99 102 105 108 111</th><th>tivation 132 136 140 144 147</th><th>2.5 165 170 175 180 184</th><th>198 204 210 216 221</th><th>39 41 42 43 45</th><th>1.0 79 81 84 87 89</th><th>og Inac 1.5 118 122 126 130 134</th><th>tivation 2.0 157 163 168 173 178</th><th>2.5 197 203 210 217 223</th><th>236 244 252 260 267</th><th>47 49 50 52 53</th><th>1.0 93 97 100 104 107</th><th>og Inac 1.5 140 146 151 156 160</th><th>tivation 2.0 186 194 201 208 213</th><th>2.5 233 243 251 260 267</th><th>279 291 301 312 320</th><th></th><th></th><th></th><th></th><th></th><th></th></th></th74<>	<th>og Inac 1.5 99 102 105 108 111</th> <th>tivation 132 136 140 144 147</th> <th>2.5 165 170 175 180 184</th> <th>198 204 210 216 221</th> <th>39 41 42 43 45</th> <th>1.0 79 81 84 87 89</th> <th>og Inac 1.5 118 122 126 130 134</th> <th>tivation 2.0 157 163 168 173 178</th> <th>2.5 197 203 210 217 223</th> <th>236 244 252 260 267</th> <th>47 49 50 52 53</th> <th>1.0 93 97 100 104 107</th> <th>og Inac 1.5 140 146 151 156 160</th> <th>tivation 2.0 186 194 201 208 213</th> <th>2.5 233 243 251 260 267</th> <th>279 291 301 312 320</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	og Inac 1.5 99 102 105 108 111	tivation 132 136 140 144 147	2.5 165 170 175 180 184	198 204 210 216 221	39 41 42 43 45	1.0 79 81 84 87 89	og Inac 1.5 118 122 126 130 134	tivation 2.0 157 163 168 173 178	2.5 197 203 210 217 223	236 244 252 260 267	47 49 50 52 53	1.0 93 97 100 104 107	og Inac 1.5 140 146 151 156 160	tivation 2.0 186 194 201 208 213	2.5 233 243 251 260 267	279 291 301 312 320						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4	33 34 35 36 37 38	1.0 66 68 70 72 74 76	og Inac 1.5 99 102 105 108 111 114	2.0 132 136 140 144 147 151	2.5 165 170 175 180 184 189	198 204 210 216 221 227	39 41 42 43 45 46	1.0 79 81 84 87 89 91	og Inac 1.5 118 122 126 130 134 137	tivation 2.0 157 163 168 173 178 183	2.5 197 203 210 217 223 228	236 244 252 260 267 274	47 49 50 52 53 55	1.0 93 97 100 104 107 110	og Inac 1.5 140 146 151 156 160 165	tivation 2.0 186 194 201 208 213 219	2.5 233 243 251 260 267 274	279 291 301 312 320 329							
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6	33 34 35 36 37 38 39	1.0 66 68 70 72 74 76 77	og Inac 1.5 99 102 105 108 111 114 116	tivation 2.0 132 136 140 144 147 151 155	2.5 165 170 175 180 184 189 193	198 204 210 216 221 227 232	39 41 42 43 45 46 47	1.0 79 81 84 87 89 91 94	og Inac 1.5 118 122 126 130 134 137 141	tivation 2.0 157 163 168 173 178 183 187	2.5 197 203 210 217 223 228 234	236 244 252 260 267 274 281	47 49 50 52 53 55 56	1.0 93 97 100 104 107 110 112	og Inac 1.5 140 146 151 156 160 165 169	tivation 2.0 186 194 201 208 213 219 225	2.5 233 243 251 260 267 274 281	279 291 301 312 320 329 337							
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8	33 34 35 36 37 38 39 40	1.0 66 68 70 72 74 76 77 79	og Inac 1.5 99 102 105 108 111 114 116 119	tivation 2.0 132 136 140 144 147 151 155 159	2.5 165 170 175 180 184 189 193 198	198 204 210 216 221 227 232 238	39 41 42 43 45 46 47 48	1.0 79 81 84 87 89 91 94 96	og Inac 1.5 118 122 126 130 134 137 141 144	tivation 2.0 157 163 168 173 178 183 183 187 191	2.5 197 203 210 217 223 228 234 239	236 244 252 260 267 274 281 287	47 49 50 52 53 55 55 56 58	1.0 93 97 100 104 107 110 112 115	og Inac 1.5 140 146 151 156 160 165 169 173	tivation 2.0 186 194 201 208 213 219 225 230	2.5 233 243 251 260 267 274 281 288	279 291 301 312 320 329 337 345			, ,				
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2	33 34 35 36 37 38 39 40 41	1.0 66 68 70 72 74 76 77 79 81	og Inac 1.5 99 102 105 108 111 114 116 119 122 124 127	tivation 2.0 132 136 140 144 147 151 155 159 162 165 169	2.5 165 170 175 180 184 189 193 198 203 207 211	198 204 210 216 221 227 232 238 243	39 41 42 43 45 46 47 48 49	1.0 79 81 84 87 89 91 94 96 98	og Inac 1.5 118 122 126 130 134 137 141 144 147	tivation 2.0 157 163 168 173 178 183 183 187 191 196	2.5 197 203 210 217 223 228 234 239 245 250 255	236 244 252 260 267 274 281 287 294 300 306	47 49 50 52 53 55 56 58 58 59	1.0 93 97 100 104 107 110 112 115 118 120 123	og Inac 1.5 140 146 151 156 160 165 169 173 177 181 184	tivation 2.0 186 194 201 208 213 219 225 230 235	2.5 233 243 251 260 267 274 281 288 294 301 307	279 291 301 312 320 329 337 345 353 361 368							
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	33 34 35 36 37 38 39 40 41 41	1.0 66 68 70 72 74 76 77 79 81 83	og Inac 1.5 99 102 105 108 111 114 116 119 122 124 127 129	tivation 2.0 132 136 140 144 147 151 155 159 162 165	2.5 165 170 175 180 184 189 193 198 203 207	198 204 210 216 221 227 232 238 243 248	39 41 42 43 45 46 47 48 49 50	1.0 79 81 84 87 89 91 94 96 98 100	og Inac 1.5 118 122 126 130 134 137 141 144 147 150	tivation 2.0 157 163 168 173 178 183 183 187 191 196 200	2.5 197 203 210 217 223 228 234 239 245 250	236 244 252 260 267 274 281 287 294 300 306 312	47 49 50 52 53 55 56 58 59 60	1.0 93 97 100 104 107 110 112 115 118 120 123 125	og Inac 1.5 140 146 151 156 160 165 169 173 177 181	tivation 2.0 186 194 201 208 213 219 225 230 235 241	2.5 233 243 251 260 267 274 281 288 294 301	279 291 301 312 320 329 337 345 353 361 368 375			,				
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4	33 34 35 36 37 38 39 40 41 42	1.0 66 68 70 72 74 76 77 79 81 83 83	og Inac 1.5 99 102 105 108 111 114 116 119 122 124 127	tivation 2.0 132 136 140 144 147 151 155 159 162 165 169	2.5 165 170 175 180 184 189 193 198 203 207 211	198 204 210 216 221 232 238 243 248 253	39 41 42 43 45 46 47 48 49 50 51	1.0 79 81 84 87 89 91 94 96 98 100 102	og Inac 1.5 118 122 126 130 134 137 141 144 147 150 153	tivation 2.0 157 163 168 173 178 183 183 187 191 196 200 204	2.5 197 203 210 217 223 228 234 239 245 250 255	236 244 252 260 267 274 281 287 294 300 306	47 49 50 52 53 55 56 58 59 60 61	1.0 93 97 100 104 107 110 112 115 118 120 123	og Inac 1.5 140 146 151 156 160 165 169 173 177 181 184	tivation 2.0 186 194 201 208 213 219 225 230 235 241 245	2.5 233 243 251 260 267 274 281 288 294 301 307	279 291 301 312 320 329 337 345 353 361 368							

Table C3.T12. CT Values for Inactivation of *Giardia* Cysts by Free Chlorine at 5.0°C*

Chlorine			pН	_					pH =						pH =						pH =			
Concentration				tivation					og Inac							tivation						tivation		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
≤0.4	12	24	37	49	61	73	15	29	44	59	73	88	17	35	52	69	87	104	21	42	63	83	104	125
0.6	13	25	38	50	63	75	15	30	45	60	75	90	18	36	54	71	89	107	21	43	64	85	107	128
0.8	13	26	39	52	65	78	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131
1	13	26	40	53	66	79	16	31	47	63	78	94	19	37	56	75	93	112	22	45	67	89	112	134
1.2	13	27	40	53	67	80	16	32	48	63	79	95	19	38	57	76	95	114	23	46	69	91	114	137
1.4	14	27	41	55	68	82	16	33	49	65	82	98	19	39	58	77	97	116	23	47	70	93	117	140
1.6	14	28	42	55	69	83	17	33	50	66	83	99	20	40	60	79	99	119	24	48	72	96	120	144
1.8	14	29	43	57	72	86	17	34	51	67	84	101	20	41	61	81	102	122	25	49	74	98	123	147
2	15	29	44	58	73	87	17	35	52	69	87	104	21	41	62	83	103	124	25	50	75	100	125	150
2.2	15	30	45	59	74	89	18	35	53	70	88	105	21	42	64	85	106	127	26	51	77	102	128	153
2.4	15	30	45	60	75	90	18	36	54	71	89	107	22	43	65	86	108	129	26	52	79	105	131	157
2.6	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131	27	53	80	107	133	160
2.8	16	31	47	62	78	93	19	37	56	74	93	111	22	45	67	89	112	134	27	54	82	109	136	163
3	16	32	48	63	79	95	19	38	57	75	94	113	23	46	69	91	114	137	28	55	83	111	138	166
-																								
Chlorine		_	pH		l		I	_	pH =						pH =									
Concentration	0.5		og Inac	tivation		2.0	0.5		og Inac	tivation		2.0	0.5		og Inac	tivation		2.0					I	
Concentration (mg/L)	0.5	1.0	og Inac 1.5	tivation 2.0	2.5	3.0	0.5	1.0	og Inac 1.5	tivation 2.0	2.5	3.0	0.5	1.0	og Inac 1.5	tivation 2.0	2.5	3.0				I	1	
Concentration (mg/L) ≤0.4	25	1.0 50	og Inac 1.5 75	tivation 2.0 99	2.5 124	149	30	1.0 59	og Inac 1.5 89	tivation 2.0 118	2.5 148	177	35	1.0 70	og Inac 1.5 105	tivation 2.0 139	2.5 174	209	<u> </u>	L		<u>I</u>	1	
Concentration (mg/L) ≤0.4 0.6	25 26	1.0 50 51	og Inac 1.5 75 77	tivation 2.0 99 102	2.5 124 128	149 153	30 31	1.0 59 61	og Inac 1.5 89 92	tivation 2.0 118 122	2.5 148 153	177 183	35 36	1.0 70 73	og Inac 1.5 105 109	tivation 2.0 139 145	2.5 174 182	209 218	1	Let a la construction de la cons		1		
Concentration (mg/L) ≤0.4 0.6 0.8	25 26 26	1.0 50 51 53	og Inac 1.5 75 77 79	tivation 2.0 99 102 105	2.5 124 128 132	149 153 158	30 31 32	1.0 59 61 63	og Inac 1.5 89 92 95	tivation 2.0 118 122 126	2.5 148 153 158	177 183 189	35 36 38	1.0 70 73 75	og Inac 1.5 105 109 113	tivation 2.0 139 145 151	2.5 174 182 188	209 218 226						
Concentration (mg/L) ≤0.4 0.6 0.8 1	25 26 26 27	1.0 50 51 53 54	og Inac 1.5 75 77 79 81	tivation 2.0 99 102 105 108	2.5 124 128 132 135	149 153 158 162	30 31 32 33	1.0 59 61 63 65	og Inac 1.5 89 92 95 98	tivation 2.0 118 122 126 130	2.5 148 153 158 163	177 183 189 195	35 36 38 39	1.0 70 73 75 78	og Inac 1.5 105 109 113 117	tivation 2.0 139 145 151 156	2.5 174 182 188 195	209 218 226 234						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2	25 26 26 27 28	1.0 50 51 53 54 55	og Inac 1.5 75 77 79 81 83	tivation 2.0 99 102 105 108 111	2.5 124 128 132 135 138	149 153 158 162 166	30 31 32 33 33	1.0 59 61 63 65 67	bg Inac 1.5 89 92 95 98 100	tivation 2.0 118 122 126 130 133	2.5 148 153 158 163 167	177 183 189 195 200	35 36 38 39 40	1.0 70 73 75 78 80	og Inac 1.5 105 109 113 117 120	tivation 2.0 139 145 151 156 160	2.5 174 182 188 195 200	209 218 226 234 240						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4	25 26 26 27 28 28 28	1.0 50 51 53 54 55 57	og Inac 1.5 75 77 79 81 83 85	tivation 2.0 99 102 105 108 111 113	2.5 124 128 132 135 138 142	149 153 158 162 166 170	30 31 32 33 33 34	1.0 59 61 63 65 67 69	Inac 1.5 89 92 95 98 100 103	tivation 2.0 118 122 126 130 133	2.5 148 153 158 163 167 172	177 183 189 195 200 206	35 36 38 39 40 41	1.0 70 73 75 78 80 82	og Inac 1.5 105 109 113 117 120 124	tivation 2.0 139 145 151 156 160 165	2.5 174 182 188 195 200 206	209 218 226 234 240 247						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2	25 26 26 27 28 28 28 29	1.0 50 51 53 54 55 57 58	og Inac 1.5 75 77 79 81 83 85 87	tivation 2.0 99 102 105 108 111	2.5 124 128 132 135 138 142 145	149 153 158 162 166	30 31 32 33 33 33 34 35	1.0 59 61 63 65 67 69 70	og Inac 1.5 89 92 95 98 100 103 106	tivation 2.0 118 122 126 130 133	2.5 148 153 158 163 167	177 183 189 195 200 206 211	35 36 38 39 40	1.0 70 73 75 78 80 82 84	og Inac 1.5 105 109 113 117 120 124 127	tivation 2.0 139 145 151 156 160	2.5 174 182 188 195 200	209 218 226 234 240 247 253						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4	25 26 26 27 28 28 28 29 30	1.0 50 51 53 54 55 57	og Inac 1.5 75 77 79 81 83 85	tivation 2.0 99 102 105 108 111 113	2.5 124 128 132 135 138 142 145 149	149 153 158 162 166 170	30 31 32 33 33 34 35 36	1.0 59 61 63 65 67 69 70 72	Inac 1.5 89 92 95 98 100 103	tivation 2.0 118 122 126 130 133	2.5 148 153 158 163 167 172	177 183 189 195 200 206 211 215	35 36 38 39 40 41	1.0 70 73 75 78 80 82 84 86	og Inac 1.5 105 109 113 117 120 124 127 130	tivation 2.0 139 145 151 156 160 165	2.5 174 182 188 195 200 206	209 218 226 234 240 247 253 259						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2	25 26 26 27 28 28 28 29 30 30	1.0 50 51 53 54 55 57 58 60 61	og Inac 1.5 75 77 79 81 83 85 87 90 91	tivation 2.0 99 102 105 108 111 113 116 119 121	2.5 124 128 132 135 138 142 145 149 152	149 153 158 162 166 170 174 179 182	30 31 32 33 33 34 35 36 37	1.0 59 61 63 65 67 69 70 72 74	og Inac 1.5 89 92 95 98 100 103 106 108 111 101	tivation 2.0 118 122 126 130 133 137 141 143 147	2.5 148 153 158 163 167 172 176 179 184	177 183 189 195 200 206 211 215 221	35 36 38 39 40 41 42 43 44	1.0 70 73 75 78 80 82 84 86 88	og Inac 1.5 105 109 113 117 120 124 127 130 133	tivation 2.0 139 145 151 156 160 165 169 173 177	2.5 174 182 188 195 200 206 211 216 221	209 218 226 234 240 247 253 259 265						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	25 26 26 27 28 28 29 30 30 30 31	1.0 50 51 53 54 55 57 58 60 61 62	og Inac 1.5 75 77 79 81 83 85 87 90 91 93	tivation 2.0 99 102 105 108 111 113 116 119 121 124	2.5 124 128 132 135 138 142 145 149 152 155	149 153 158 162 166 170 174 179 182 186	30 31 32 33 33 34 35 36 37 38	1.0 59 61 63 65 67 69 70 72 74 75	og Inac 1.5 89 92 95 98 100 103 106 108 111 113	tivation 2.0 118 122 126 130 133 137 141 143 147 150	2.5 148 153 158 163 167 172 176 179 184 188	177 183 189 195 200 206 211 215 221 225	35 36 38 39 40 41 41 42 43	1.0 70 73 75 78 80 82 84 86 88 90	og Inac 1.5 105 109 113 117 120 124 127 130 133 136	tivation 2.0 139 145 151 156 160 165 169 173 177 181	2.5 174 182 188 195 200 206 211 216 221 226	209 218 226 234 240 247 253 259 265 271						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2	25 26 26 27 28 28 29 30 30 30 31 32	1.0 50 51 53 54 55 57 58 60 61 62 63	og Inac 1.5 75 77 79 81 83 85 87 90 91 93 95	tivation 2.0 99 102 105 108 111 113 116 119 121 124 127	2.5 124 128 132 135 138 142 145 149 152 155 158	149 153 158 162 166 170 174 179 182 186 190	30 31 32 33 33 34 35 36 37	1.0 59 61 63 65 67 69 70 72 74 75 77	og Inac 1.5 89 92 95 98 100 103 106 108 111 113 115 115	tivation 2.0 118 122 126 130 133 137 141 143 147	2.5 148 153 158 163 167 172 176 179 184	177 183 189 195 200 206 211 215 221 225 230	35 36 38 39 40 41 42 43 44	1.0 70 73 75 78 80 82 84 86 88 90 92	og Inac 1.5 105 109 113 117 120 124 127 130 133 136 138	tivation 2.0 139 145 151 156 160 165 169 173 177 181 184	2.5 174 182 188 195 200 206 211 216 221 226 230	209 218 226 234 240 247 253 259 265 271 276						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	25 26 26 27 28 28 29 30 30 30 31	1.0 50 51 53 54 55 57 58 60 61 62	og Inac 1.5 75 77 79 81 83 85 87 90 91 93	tivation 2.0 99 102 105 108 111 113 116 119 121 124	2.5 124 128 132 135 138 142 145 149 152 155	149 153 158 162 166 170 174 179 182 186	30 31 32 33 33 34 35 36 37 38	1.0 59 61 63 65 67 69 70 72 74 75	og Inac 1.5 89 92 95 98 100 103 106 108 111 113	tivation 2.0 118 122 126 130 133 137 141 143 147 150	2.5 148 153 158 163 167 172 176 179 184 188	177 183 189 195 200 206 211 215 221 225	35 36 38 39 40 41 42 43 44 45	1.0 70 73 75 78 80 82 84 86 88 90	og Inac 1.5 105 109 113 117 120 124 127 130 133 136	tivation 2.0 139 145 151 156 160 165 169 173 177 181	2.5 174 182 188 195 200 206 211 216 221 226	209 218 226 234 240 247 253 259 265 271						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4	25 26 26 27 28 28 29 30 30 30 31 32	1.0 50 51 53 54 55 57 58 60 61 62 63	og Inac 1.5 75 77 79 81 83 85 87 90 91 93 95	tivation 2.0 99 102 105 108 111 113 116 119 121 124 127	2.5 124 128 132 135 138 142 145 149 152 155 158	149 153 158 162 166 170 174 179 182 186 190	30 31 32 33 33 34 35 36 37 38 38	1.0 59 61 63 65 67 69 70 72 74 75 77	og Inac 1.5 89 92 95 98 100 103 106 108 111 113 115 115	tivation 2.0 118 122 126 130 133 137 141 143 147 150 153	2.5 148 153 158 163 167 172 176 179 184 188 192	177 183 189 195 200 206 211 215 221 225 230	35 36 38 39 40 41 42 43 44 45 46	1.0 70 73 75 78 80 82 84 86 88 90 92	og Inac 1.5 105 109 113 117 120 124 127 130 133 136 138	tivation 2.0 139 145 151 156 160 165 169 173 177 181 184	2.5 174 182 188 195 200 206 211 216 221 226 230	209 218 226 234 240 247 253 259 265 271 276						

Table C3.T13.	CT Values for Inactivation of <i>Giardia</i> Cysts by Free Chlorine at 10°	°C*

Chlorine Concentration		т	pH og Inog	≤6 tivation	6			т	pH =	= 6.5 tivation	5			Т	pH =	= 7.0 tivation:	5			L	pH =	= 7.5 tivation	E.	
(mg/L)	0.5	1.0	0g mac 1.5	2.0	s 2.5	3.0	0.5	1.0	0g mac 1.5	2.0	2.5	3.0	0.5	1.0	0g mac 1.5	2.0	2.5	3.0	0.5	1.0	0g mac 1.5	2.0	2.5	3.0
≤0.4	8	16	25	33	41	49	10	20	30	39	49	59	12	23	35	47	58	70	14	28	42	55	69	83
0.6	8	17	25	33	42	50	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	86
0.8	9	17	26	35	43	52	10	20	31	41	51	61	12	24	37	49	61	73	15	29	44	59	73	88
1	9	18	27	35	44	53	11	21	32	42	53	63	13	25	38	50	63	75	15	30	45	60	75	90
1.2	9	18	27	36	45	54	11	21	32	43	53	64	13	25	38	51	63	76	15	31	46	61	77	92
1.4	9	18	28	37	46	55	11	22	33	43	54	65	13	26	39	52	65	78	16	31	47	63	78	94
1.6	9	19	28	37	47	56	11	22	33	44	55	66	13	26	40	53	66	79	16	32	48	64	80	96
1.8	10	19	29	38	48	57	11	23	34	45	57	68	14	27	41	54	68	81	16	33	49	65	82	98
2	10	19	29	39	48	58	12	23	35	46	58	69	14	28	42	55	69	83	17	33	50	67	83	100
2.2	10	20	30	39	49	59	12	23	35	47	58	70	14	28	43	57	71	85	17	34	51	68	85	102
2.4	10	20	30	40	50	60	12	24	36	48	60	72	14	29	43	57	72	86	18	35	53	70	88	105
2.6	10	20	31	41	51	61	12	24	37	49	61	73	15	29	44	59	73	88	18	36	54	71	89	107
2.8	10	21	31	41	52	62	12	25	37	49	62	74	15	30	45	59	74	89	18	36	55	73	91	109
3	11	21	32	42	53	63	13	25	38	51	63	76	15	30	46	61	76	91	19	37	56	74	93	111
Chlorine Concentration		т	рH		_			т	pH =		_			т	pH =		_							
(mg/L)	0.5	1.0	og Inac 1.5	tivation 2.0	s 2.5	3.0	0.5	1.0	og mac 1.5	tivation 2.0	2.5	3.0	0.5	L 1.0	og mac 1.5	tivation: 2.0	s 2.5	3.0						
<u>≤0.4</u>	17	33	50	66	83	99	20	39	59	79	98	118	23	47	70	93	117	140						
0.6	17	34	51	68	85	102	20	41	61	81	102	122	24	49	73	97	122	146						
0.8	18	35	53	70	88	105	21	42	63	84	105	126	25	50	76	101	126	151						
1	18	36	54	72	90	108	22	43	65	87	108	130	26	52	78	104	130	156						
1.2	19	37	56	74	93	111	22	45	67	89	112	134	27	53	80	107	133	160						
1.4	19	38	57	76	95	114	23	46	69	91	114	137	28	55	83	110	138	165						
1.6	19	39	58	77	97	116	24	47	71	94	118	141	28	56	85	113	141	169						
	19	39	28	//	,,						-													
1.8	20	40	60	79	99	119	24	48	72	96	120	144	29	58	87	115	144	173						
1.8 2	-					-	24 25		72 74	96 98	120 123	144 147	29 30	58 59	87 89	115 118	144 148	173 177						
	20	40	60	79	99	119		48								-								
2	20 20	40 41	60 61	79 81	99 102	119 122	25	48 49	74	98	123	147	30	59	89	118	148	177						
2 2.2	20 20 21	40 41 41	60 61 62	79 81 83	99 102 103	119 122 124	25 25	48 49 50	74 75	98 100	123 125	147 150	30 30	59 60	89 91	118 121	148 151	177 181						
2 2.2 2.4	20 20 21 21	40 41 41 42	60 61 62 64	79 81 83 85	99 102 103 106	119 122 124 127	25 25 26	48 49 50 51	74 75 77	98 100 102	123 125 128	147 150 153	30 30 31	59 60 61	89 91 92	118 121 123	148 151 153	177 181 184						

Table C3.T14. CT Values for Inactivation of *Giardia* Cysts by Free Chlorine at 15°C*

Chlorine			pН						pH =						pH =						pH =			
Concentration				tivation						tivation					og Inac						og Inac			
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
≤0.4	6	12	18	24	30	36	7	15	22	29	37	44	9	17	26	35	43	52	10	21	31	41	52	62
0.6	6	13	19	25	32	38	8	15	23	30	38	45	9	18	27	36	45	54	11	21	32	43	53	64
0.8	7	13	20	26	33	39	8	15	23	31	38	46	9	18	28	37	46	55	11	22	33	44	55	66
1	7	13	20	26	33	39	8	16	24	31	39	47	9	19	28	37	47	56	11	22	34	45	56	67
1.2	7	13	20	27	33	40	8	16	24	32	40	48	10	19	29	38	48	57	12	23	35	46	58	69
1.4	7	14	21	27	34	41	8	16	25	33	41	49	10	19	29	39	48	58	12	23	35	47	58	70
1.6	7	14	21	28	35	42	8	17	25	33	42	50	10	20	30	39	49	59	12	24	36	48	60	72
1.8	7	14	22	29	36	43	9	17	26	34	43	51	10	20	31	41	51	61	12	25	37	49	62	74
2	7	15	22	29	37	44	9	17	26	35	43	52	10	21	31	41	52	62	13	25	38	50	63	75
2.2	7	15	22	29	37	44	9	18	27	35	44	53	11	21	32	42	53	63	13	26	39	51	64	77
2.4	8	15	23	30	38	45	9	18	27	36	45	54	11	22	33	43	54	65	13	26	39	52	65	78
2.6	8	15	23	31	38	46	9	18	28	37	46	55	11	22	33	44	55	66	13	27	40	53	67	80
2.8	8	16	24	31	39	47	9	19	28	37	47	56	11	22	34	45	56	67	14	27	41	54	68	81
3	8	16	24	31	39	47	10	19	29	38	48	57	11	23	34	45	57	68	14	28	42	55	69	83
Chlorine			pН						pH =						pH =									
Concentration			.og Inac	tivation					og Inac	tivation					og Inac	tivation								
	0.5	1.0	og Inac 1.5	tivation 2.0	2.5	3.0	0.5	1.0	og Inac 1.5	tivation 2.0	2.5	3.0	0.5	1.0	og Inac 1.5	tivation 2.0	2.5	3.0						
Concentration (mg/L) ≤0.4	12	1.0 25	log Inac 1.5 37	tivation 2.0 49	2.5 62	74	15	1.0 30	og Inac 1.5 45	tivation 2.0 59	2.5 74	89	18	1.0 35	og Inac 1.5 53	tivation 2.0 70	2.5 88	105						
Concentration (mg/L) ≤0.4 0.6	12 13	1.0 25 26	Log Inac 1.5 37 39	tivation 2.0 49 51	2.5 62 64	74 77	15 15	1.0 30 31	og Inac 1.5 45 46	tivation 2.0 59 61	2.5 74 77	89 92	18 18	1.0 35 36	og Inac 1.5 53 55	tivation 2.0 70 73	2.5 88 91	105 109						
Concentration (mg/L) ≤0.4	12 13 13	1.0 25 26 26	Log Inac 1.5 37 39 40	tivation 2.0 49 51 53	2.5 62 64 66	74 77 79	15 15 16	1.0 30 31 32	og Inac 1.5 45 46 48	tivation 2.0 59 61 63	2.5 74 77 79	89 92 95	18 18 19	1.0 35 36 38	og Inac 1.5 53 55 57	tivation 2.0 70 73 75	2.5 88 91 94	105 109 113						
Concentration (mg/L) ≤0.4 0.6	12 13	1.0 25 26	Log Inac 1.5 37 39 40 41	tivation 2.0 49 51 53 54	2.5 62 64 66 68	74 77 79 81	15 15 16 16	1.0 30 31 32 33	og Inac 1.5 45 46 48 49	tivation 2.0 59 61 63 65	2.5 74 77 79 82	89 92 95 98	18 18 19 20	1.0 35 36 38 39	og Inac 1.5 53 55	tivation 2.0 70 73 75 78	2.5 88 91 94 98	105 109 113 117						
Concentration (mg/L) ≤0.4 0.6 0.8	12 13 13	1.0 25 26 26	Log Inac 1.5 37 39 40 41 42	tivation 49 51 53 54 55	2.5 62 64 66	74 77 79 81 83	15 15 16 16 17	1.0 30 31 32 33 33	og Inac 1.5 45 46 48 49 50	tivation 2.0 59 61 63	2.5 74 77 79	89 92 95	18 18 19	1.0 35 36 38	og Inac 1.5 53 55 57	tivation 2.0 70 73 75 78 80	2.5 88 91 94	105 109 113 117 120						
Concentration (mg/L) ≤0.4 0.6 0.8 1	12 13 13 14	1.0 25 26 26 27	Log Inac 1.5 37 39 40 41	tivation 2.0 49 51 53 54	2.5 62 64 66 68	74 77 79 81	15 15 16 16	1.0 30 31 32 33	og Inac 1.5 45 46 48 49	tivation 2.0 59 61 63 65	2.5 74 77 79 82	89 92 95 98	18 18 19 20	1.0 35 36 38 39	og Inac 1.5 53 55 57 59	tivation 2.0 70 73 75 78	2.5 88 91 94 98	105 109 113 117						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2	12 13 13 14 14	1.0 25 26 26 27 28	Log Inac 1.5 37 39 40 41 42	tivation 49 51 53 54 55	2.5 62 64 66 68 69	74 77 79 81 83	15 15 16 16 17	1.0 30 31 32 33	og Inac 1.5 45 46 48 49 50	tivation 2.0 59 61 63 65 67	2.5 74 77 79 82 83	89 92 95 98 100	18 18 19 20 20	1.0 35 36 38 39 40	og Inac 1.5 53 55 57 59 60	tivation 2.0 70 73 75 78 80	2.5 88 91 94 98 100	105 109 113 117 120						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4	12 13 13 14 14 14	1.0 25 26 27 28 28	Log Inac 1.5 37 39 40 41 42 43	tivation 2.0 49 51 53 54 55 57	2.5 62 64 66 68 69 71 73 74	74 77 79 81 83 85	15 15 16 16 17 17 17 18 18	1.0 30 31 32 33 33 34 35 36	og Inac 1.5 45 46 48 49 50 52 53 54	tivation 2.0 59 61 63 65 65 67 69	2.5 74 77 79 82 83 86	89 92 95 98 100 103 105 108	18 18 19 20 20 21	1.0 35 36 38 39 40 41	og Inac 1.5 53 55 57 59 60 62	tivation 2.0 70 73 75 78 80 82	2.5 88 91 94 98 100 103	105 109 113 117 120 123 126 129						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6	12 13 13 14 14 14 14 15	1.0 25 26 27 28 29	lnac 1.5 37 39 40 41 42 43 44	tivation 2.0 49 51 53 54 55 57 58	2.5 62 64 66 68 69 71 73	74 77 79 81 83 85 87	15 15 16 16 17 17 18	1.0 30 31 32 33 33 33 33 33 34 35	og Inac 1.5 45 46 48 49 50 52 53	tivation 2.0 59 61 63 65 67 69 70	2.5 74 77 79 82 83 86 88	89 92 95 98 100 103 105	18 18 19 20 20 20 21 21	1.0 35 36 38 39 40 41 42	og Inac 1.5 53 55 57 59 60 62 63	tivation 2.0 70 73 75 78 80 80 82 84	2.5 88 91 94 98 100 103 105	105 109 113 117 120 123 126						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8	12 13 13 14 14 14 14 15 15	1.0 25 26 27 28 29 30	Inac Inac 37 39 40 41 42 43 44 45	tivation 2.0 49 51 53 54 55 57 58 59	2.5 62 64 66 68 69 71 73 74 73 74 76 78	74 77 79 81 83 85 87 89 91 93	15 15 16 16 17 17 17 18 18	1.0 30 31 32 33 33 34 35 36	og Inac 1.5 45 46 48 49 50 52 53 54 55 57	tivation 2.0 59 61 63 65 67 69 70 70 72	2.5 74 77 79 82 83 86 88 90	89 92 95 98 100 103 105 108	18 18 19 20 20 21 21 22	1.0 35 36 38 39 40 41 42 43	og Inac 1.5 53 55 57 59 60 62 63 65	tivation 2.0 70 73 75 78 80 82 84 84 86	2.5 88 91 94 98 100 103 105 108	105 109 113 117 120 123 126 129						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2	12 13 13 14 14 14 15 15	1.0 25 26 27 28 29 30	Jac Jac 37 39 40 41 42 43 44 45 46 46	tivation 2.0 49 51 53 54 55 57 58 59 61	2.5 62 64 66 68 69 71 73 74 74 76	74 77 79 81 83 85 87 89 91	15 15 16 16 17 17 17 18 18 18	1.0 30 31 32 33 33 34 35 36 37	og Inac 1.5 45 46 48 49 50 52 53 54 55	tivation 2.0 59 61 63 65 67 69 70 70 72 73	2.5 74 77 79 82 83 86 88 88 90 92	89 92 95 98 100 103 105 108 110	18 18 19 20 20 21 21 22 22	1.0 35 36 38 39 40 41 42 43 44	og Inac 1.5 53 55 57 59 60 62 63 65 66	tivation 2.0 70 73 75 78 80 82 84 84 86 88	2.5 88 91 94 98 100 103 105 108 110	105 109 113 117 120 123 126 129 132						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	12 13 13 14 14 14 14 15 15 15 15 16	1.0 25 26 27 28 29 30 31	Jac Jac 37 39 40 41 42 43 44 45 46 47	tivation 2.0 49 51 53 54 55 57 58 59 61 62	2.5 62 64 66 68 69 71 73 74 73 74 76 78	74 77 79 81 83 85 87 89 91 93	15 15 16 16 17 17 17 18 18 18 18 19	1.0 30 31 32 33 33 34 35 36 37 38	og Inac 1.5 45 46 48 49 50 52 53 54 55 57	tivation 2.0 59 61 63 65 67 69 70 70 72 73 75	2.5 74 77 79 82 83 86 88 90 92 92	89 92 95 98 100 103 105 108 110	18 18 19 20 20 21 21 22 22 23	1.0 35 36 38 39 40 41 42 43 44 45	og Inac 1.5 53 55 57 59 60 62 63 65 66 68	tivation 2.0 70 73 75 78 80 82 84 84 86 88 90	2.5 88 91 94 98 100 103 105 108 110 113	105 109 113 117 120 123 126 129 132 135						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4	12 13 13 14 14 14 15 15 15 15 16 16	1.0 25 26 27 28 29 30 31 32	Jac Jac 37 39 40 41 42 43 44 45 46 47 48 48	tivation 2.0 49 51 53 54 55 57 58 59 61 62 63	2.5 62 64 66 68 69 71 73 74 76 78 79	74 77 79 81 83 85 87 89 91 93 95	15 15 16 16 17 17 18 18 18 18 19 19	1.0 30 31 32 33 33 34 35 36 37 38	og Inac 1.5 45 46 48 49 50 52 53 54 55 57 58	tivation 2.0 59 61 63 65 67 69 70 70 72 73 75 77	2.5 74 77 79 82 83 86 88 90 92 92 94 94	89 92 95 98 100 103 105 108 110 113 115	18 18 19 20 21 21 22 22 23	1.0 35 36 38 39 40 41 42 43 44 45 46	og Inac 1.5 53 55 57 59 60 62 63 65 66 68 69	tivation 2.0 70 73 75 78 80 82 84 84 86 88 90 92	2.5 88 91 94 98 100 103 105 108 110 113 115	105 109 113 117 120 123 126 129 132 135 138						

Table C3.T15. CT Values for Inactivation of *Giardia* Cysts by Free Chlorine at 20°C*

Chlorine			pН						pH =						pH =						pH =			
Concentration				tivation					og Inac							tivation						tivation		
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
≤0.4	4	8	12	16	20	24	5	10	15	19	24	29	6	12	18	23	29	35	7	14	21	28	35	42
0.6	4	8	13	17	21	25	5	10	15	20	25	30	6	12	18	24	30	36	7	14	22	29	36	43
0.8	4	9	13	17	22	26	5	10	16	21	26	31	6	12	19	25	31	37	7	15	22	29	37	44
1	4	9	13	17	22	26	5	10	16	21	26	31	6	12	19	25	31	37	8	15	23	30	38	45
1.2	5	9	14	18	23	27	5	11	16	21	27	32	6	13	19	25	32	38	8	15	23	31	38	46
1.4	5	9	14	18	23	27	6	11	17	22	28	33	7	13	20	26	33	39	8	16	24	31	39	47
1.6	5	9	14	19	23	28	6	11	17	22	28	33	7	13	20	27	33	40	8	16	24	32	40	48
1.8	5	10	15	19	24	29	6	11	17	23	28	34	7	14	21	27	34	41	8	16	25	33	41	49
2	5	10	15	19	24	29	6	12	18	23	29	35	7	14	21	27	34	41	8	17	25	33	42	50
2.2	5	10	15	20	25	30	6	12	18	23	29	35	7	14	21	28	35	42	9	17	26	34	43	51
2.4	5	10	15	20	25	30	6	12	18	24	30	36	7	14	22	29	36	43	9	17	26	35	43	52
2.6	5	10	16	21	26	31	6	12	19	25	31	37	7	15	22	29	37	44	9	18	27	35	44	53
2.8	5	10	16	21	26	31	6	12	19	25	31	37	8	15	23	30	38	45	9	18	27	36	45	54
3	5	11	16	21	27	32	6	13	19	25	32	38	8	15	23	31	38	46	9	18	28	37	46	55
Chlorine			pН						pH =						pH =									
Concentration			og Inac	tivation					og Inac	tivation					og Inac	tivation								
	0.5	L 1.0	og Inac 1.5	tivation 2.0	2.5	3.0	0.5	1.0	og Inac 1.5	tivation 2.0	s 2.5	3.0	0.5	1.0	og Inac 1.5	tivation 2.0	s 2.5	3.0						
Concentration (mg/L) ≤0.4	8	1.0 17	og Inac 1.5 25	tivation 2.0 33	2.5 42	50	10	1.0 20	og Inac 1.5 30	tivation 2.0 39	2.5 49	59	12	1.0 23	og Inac 1.5 35	tivation 2.0 47	2.5 58	70						
Concentration (mg/L) ≤0.4 0.6	8	1.0 17 17	og Inac 1.5 25 26	tivation 2.0 33 34	2.5 42 43	50 51	10 10	1.0 20 20	og Inac 1.5 30 31	tivation 2.0 39 41	2.5 49 51	59 61	12 12	1.0 23 24	og Inac 1.5 35 37	tivation 2.0 47 49	2.5 58 61	70 73						
Concentration (mg/L) ≤0.4	8 9 9	1.0 17 17 18	og Inac 1.5 25 26 27	tivation 2.0 33 34 35	2.5 42 43 44	50 51 53	10 10 11	1.0 20 20 21	og Inac 1.5 30 31 32	tivation 2.0 39 41 42	2.5 49 51 53	59 61 63	12 12 13	1.0 23 24 25	og Inac 1.5 35 37 38	tivation 2.0 47 49 50	2.5 58 61 63	70 73 75						
Concentration (mg/L) ≤0.4 0.6 0.8 1	8 9 9 9	1.0 17 17 18 18	log Inac 1.5 25 26 27 27 27	tivation 2.0 33 34 35 36	2.5 42 43 44 45	50 51 53 54	10 10 11 11	1.0 20 20 21 22	og Inac 1.5 30 31 32 33	tivation 2.0 39 41 42 43	2.5 49 51 53 54	59 61 63 65	12 12 13 13	1.0 23 24 25 26	og Inac 1.5 35 37 38 39	tivation 2.0 47 49 50 52	2.5 58 61 63 65	70 73 75 78						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2	8 9 9 9 9 9 9	1.0 17 17 18 18 18	og Inac 1.5 25 26 27 27 28	tivation 33 34 35 36 37	2.5 42 43 44 45 46	50 51 53 54 55	10 10 11 11 11	1.0 20 20 21 22 22	og Inac 1.5 30 31 32 33 34	tivation 2.0 39 41 42 43 45	2.5 49 51 53 54 56	59 61 63 65 67	12 12 13 13 13	1.0 23 24 25 26 27	og Inac 1.5 35 37 38 39 40	tivation 2.0 47 49 50 52 53	2.5 58 61 63 65 67	70 73 75 78 80						
Concentration (mg/L) ≤0.4 0.6 0.8 1	8 9 9 9 9 9 9 10	1.0 17 17 18 18 18 18 19	og Inac 1.5 25 26 27 27 28 29	tivation 2.0 33 34 35 36 37 38	2.5 42 43 44 45 46 48	50 51 53 54 55 57	10 10 11 11 11 12	1.0 20 20 21 22 23	og Inac 1.5 30 31 32 33 34 35	tivation 2.0 39 41 42 43	2.5 49 51 53 54 56 58	59 61 63 65 67 69	12 12 13 13	1.0 23 24 25 26	og Inac 1.5 35 37 38 39	tivation 2.0 47 49 50 52 53 55	2.5 58 61 63 65 67 68	70 73 75 78 80 82						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2	8 9 9 9 9 9 9	1.0 17 17 18 18 18 18 19 19	og Inac 1.5 25 26 27 27 28 29 29	tivation 2.0 33 34 35 36 37 38 39	2.5 42 43 44 45 46 48 48	50 51 53 54 55 57 58	10 10 11 11 11 12 12	1.0 20 20 21 22 23 23	og Inac 1.5 30 31 32 33 34 35 35	tivation 2.0 39 41 42 43 45	2.5 49 51 53 54 56	59 61 63 65 67 69 70	12 12 13 13 13	1.0 23 24 25 26 27 28	og Inac 1.5 35 37 38 39 40	tivation 2.0 47 49 50 52 53 55 55 56	2.5 58 61 63 65 67 68 70	70 73 75 78 80 82 84						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4	8 9 9 9 9 9 10 10 10	1.0 17 17 18 18 19 19 20	og Inac 1.5 25 26 27 27 28 29 29 29 30	tivation 2.0 33 34 35 36 37 38	2.5 42 43 44 45 46 48	50 51 53 54 55 57	10 10 11 11 11 12 12 12 12	1.0 20 20 21 22 23 23 24	og Inac 1.5 30 31 32 33 34 35 35 36	tivation 2.0 39 41 42 43 45 46	2.5 49 51 53 54 56 58	59 61 63 65 67 69	12 12 13 13 13 13 14	1.0 23 24 25 26 27 28 29	og Inac 1.5 35 37 38 39 40 41	tivation: 2.0 47 49 50 52 53 55 56 57	2.5 58 61 63 65 67 68 70 72	70 73 75 78 80 82 84 86						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2	8 9 9 9 9 9 9 10 10 10 10	1.0 17 17 18 18 19 20 20	og Inac 1.5 25 26 27 27 28 29 29 30 31	tivation 2.0 33 34 35 36 37 38 39 40 41	2.5 42 43 44 45 46 48 50 51	50 51 53 54 55 57 58 60 61	10 10 11 11 11 12 12 12 12 12	1.0 20 20 21 22 23 23 24 25	og Inac 1.5 30 31 32 33 34 35 35 36 37	tivation 2.0 39 41 42 43 45 46 47 48 49	2.5 49 51 53 54 56 58 58 60 62	59 61 63 65 67 69 70 72 74	12 12 13 13 13 14 14 14 14 15	1.0 23 24 25 26 27 28 29	og Inac 1.5 35 37 38 39 40 41 42 43 44	tivation: 2.0 47 49 50 52 53 55 56 57 59	2.5 58 61 63 65 67 68 70 72 73	70 73 75 78 80 82 84 84 86 88						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	8 9 9 9 9 9 9 10 10 10 10 10	1.0 17 17 18 18 19 20 20 21	og Inac 1.5 25 26 27 27 28 29 29 30 31 31	tivation 2.0 33 34 35 36 37 38 39 40 41	2.5 42 43 44 45 46 48 48 50 51 52	50 51 53 54 55 57 58 60 61 62	10 10 11 11 11 12 12 12 12 13	1.0 20 20 21 22 23 23 24 25	og Inac 1.5 30 31 32 33 34 35 35 36 37 38	tivation 2.0 39 41 42 43 45 46 47 48 49 50	2.5 49 51 53 54 56 58 58 60 62 63	59 61 63 65 67 69 70 72 74 74 75	12 12 13 13 13 14 14 14 14 15 15	1.0 23 24 25 26 27 28 29 29 30	og Inac 1.5 35 37 38 39 40 41 42 43 44 45	tivation: 2.0 47 49 50 52 53 55 56 57 59 60	2.5 58 61 63 65 67 68 70 72 73 75	70 73 75 78 80 82 84 84 86 88 90						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2	8 9 9 9 9 9 9 10 10 10 10	1.0 17 17 18 18 19 20 20 21	og Inac 1.5 25 26 27 27 28 29 29 29 30 31 31 32	tivation 2.0 33 34 35 36 37 38 39 40 41	2.5 42 43 44 45 46 48 48 50 51 52 53	50 51 53 54 55 57 58 60 61 62 63	10 10 11 11 11 12 12 12 12 13	1.0 20 20 21 22 23 23 24 25 26	og Inac 1.5 30 31 32 33 34 35 35 36 37 38 39	tivation 2.0 39 41 42 43 45 46 47 48 49	2.5 49 51 53 54 56 58 58 60 62	59 61 63 65 67 69 70 72 74 75 77	12 12 13 13 13 14 14 14 14 15	1.0 23 24 25 26 27 28 29	og Inac 1.5 35 37 38 39 40 41 42 43 44	tivation: 2.0 47 49 50 52 53 55 56 57 59 60 61	2.5 58 61 63 65 67 68 70 72 73 75 77	70 73 75 78 80 82 84 84 86 88						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	8 9 9 9 9 9 9 10 10 10 10 10	1.0 17 17 18 18 19 20 20 21 21 22	og Inac 1.5 25 26 27 27 28 29 29 30 31 31 32 33	tivation 2.0 33 34 35 36 37 38 39 40 41	2.5 42 43 44 45 46 48 50 51 52 53 54	50 51 53 54 55 57 58 60 61 62 63 65	10 10 11 11 11 12 12 12 12 13 13	1.0 20 20 21 22 23 23 24 25 26 26	og Inac 1.5 30 31 32 33 34 35 35 36 37 38 39 39	tivation 2.0 39 41 42 43 45 46 47 48 49 50	2.5 49 51 53 54 56 58 58 60 62 63	59 61 63 65 67 69 70 72 74 74 75	12 12 13 13 13 14 14 14 14 15 15	1.0 23 24 25 26 27 28 29 20 30 31	og Inac 1.5 35 37 38 39 40 41 42 43 44 45	tivation: 2.0 47 49 50 52 53 55 56 57 59 60	2.5 58 61 63 65 67 68 70 72 73 75 77 78	70 73 75 78 80 82 84 86 88 90 92 92 94						
Concentration (mg/L) ≤0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4	8 9 9 9 9 9 10 10 10 10 10 10	1.0 17 17 18 18 19 20 20 21	og Inac 1.5 25 26 27 27 28 29 29 29 30 31 31 32	tivation 2.0 33 34 35 36 37 38 39 40 41 42	2.5 42 43 44 45 46 48 48 50 51 52 53	50 51 53 54 55 57 58 60 61 62 63	10 10 11 11 11 12 12 12 12 13	1.0 20 20 21 22 23 23 24 25 26	og Inac 1.5 30 31 32 33 34 35 35 36 37 38 39	tivation 2.0 39 41 42 43 45 46 47 48 49 50 51	2.5 49 51 53 54 56 58 58 60 62 63 64	59 61 63 65 67 69 70 72 74 75 77	12 12 13 13 13 14 14 14 14 15 15 15	1.0 23 24 25 26 27 28 29 20 30 31	og Inac 1.5 35 37 38 39 40 41 42 43 44 45 46	tivation: 2.0 47 49 50 52 53 55 56 57 59 60 61	2.5 58 61 63 65 67 68 70 72 73 75 77	70 73 75 78 80 82 84 86 88 90 92						

	Log Inac	tivation	Log Ina	octivation	Log Ina	ctivation
	2.)	3	3.0	4	.0
Temperature (C)	рН 6-9	pH 10	рН 6-9	pH 10	рН 6-9	pH 10
0.5	6	45	9	66	12	90
5	4	30	6	44	8	60
10	3	22	4	33	6	45
15	2	15	3	22	4	30
20	1	11	2	16	3	22
25	1	7	1	11	2	15

Table C3.T17. CT Values for Inactivation of Viruses by Free Chlorin	Table C3.T17.	CT Values for	Inactivation of	Viruses by Free	Chlorine
---	---------------	---------------	-----------------	-----------------	----------

Table C3.T18. CT Values for Inactivation of Giardia Cysts by Chlorine Dioxide

	Temperature (C)					
Inactivation	≤1	5	10	15	20	25
0.5-log	10	4.3	4	3.2	2.5	2
1-log	21	8.7	7.7	6.3	5	3.7
1.5-log	32	13	12	10	7.5	5.5
2-log	42	17	15	13	10	7.3
2.5-log	52	22	19	16	13	9
3-log	63	26	23	19	15	11

Table C3.T19. CT Values for Inactivation of Viruses by Free Chlorine Dioxide pH 6-9

	Temperature (C)					
Removal	≤1	5	10	15	20	25
2-log	8.4	5.6	4.2	2.8	2.1	1.4
3-log	25.6	17.1	12.8	8.6	6.4	4.3
4-log	50.1	33.4	25.1	16.7	12.5	8.4

	Temperature (C)					
Inactivation	≤1	5	10	15	20	25
0.5-log	0.48	0.32	0.23	0.16	0.12	0.08
1-log	0.97	0.63	0.48	0.32	0.24	0.16
1.5-log	1.5	0.95	0.72	0.48	0.36	0.24
2-log	1.9	1.3	0.95	0.63	0.48	0.32
2.5-log	2.4	1.6	1.2	0.79	0.60	0.40
3-log	2.9	1.9	1.43	0.95	0.72	0.48

	Temperature (C)					
Inactivation	≤1	5	10	15	20	25
2-log	0.9	0.6	0.5	0.3	0.25	0.15
3-log	1.4	0.9	0.8	0.5	0.4	0.25
4-log	1.8	1.2	1.0	0.6	0.5	0.3

Table C3.T21. CT Values for Inactivation of Viruses by Free Ozone

Table C3.T22. CT Values for Inactivation of Giardia Cysts by Chloramine pH 6-9

	Temperature (C)					
Inactivation	≤1	5	10	15	20	25
0.5-log	635	365	310	250	185	125
1-log	1,270	735	615	500	370	250
1.5-log	1,900	1,100	930	750	550	375
2-log	2,535	1,470	1,230	1,000	735	500
2.5-log	3,170	1,830	1,540	1,250	915	625
3-log	3,800	2,200	1,850	1,500	1,100	750

Table C3.T23. CT Values for Inactivation of Viruses by Chloramine

		Temperature (C)				
Inactivation	≤1	5	10	15	20	25
2-log	1,243	857	643	428	321	214
3-log	2,063	1,423	1,067	712	534	356
4-log	2,883	1,988	1,491	994	746	497

Table C3.T24. CT Values for Inactivation of Viruses by UV

Log Ina	ctivation
2.0	3.0
21	36

C4. <u>CHAPTER 4</u>

WASTEWATER

C4.1. <u>SCOPE</u>

This Chapter contains criteria to control and regulate discharges of wastewater into surface waters. This includes, but is not limited to, storm water runoff associated with industrial activities, domestic and industrial wastewater discharges, and pollutants from indirect dischargers.

C4.2. <u>DEFINITIONS</u>

C4.2.1. <u>7-day Average</u>. The arithmetic mean of pollutant parameter values for samples collected in a period of 7 consecutive days.

C4.2.2. <u>30-day Average</u>. The arithmetic mean of pollutant parameter values for samples collected in a period of 30 consecutive days.

C4.2.3. <u>Average Monthly Discharge Limitations</u>. The highest allowable average of "daily discharges" over a calendar month, calculated as the sum of all "daily discharges" measured during a calendar month divided by the number of "daily discharges" measured during that month.

C4.2.4. <u>Average Weekly Discharge Limitation</u>. The highest allowable average of "daily discharges" over a calendar week, calculated as the sum of all "daily discharges" measured during a calendar week divided by the number of "daily discharges" measured during that week.

C4.2.5. <u>Best Management Practices (BMP)</u>. Practical practices and procedures that will minimize or eliminate the possibility of pollution being introduced into Waters of Japan.

C4.2.6. <u>Biochemical Oxygen Demand (BOD5</u>). The 5-day measure of the dissolved oxygen used by microorganisms in the biochemical oxidation of organic matter. The pollutant parameter is biochemical oxygen demand (i.e., biodegradable organics in terms of oxygen demand).

C4.2.7. <u>Carbonaceous BOD₅ (CBOD₅)</u>. The 5-day measure of the pollutant parameter, CBOD₅. This test can substitute for the BOD₅ testing which suppresses the nitrification reaction/component in the BOD₅ test.

C4.2.8. <u>Chemical Oxygen Demand (COD)</u>. COD is a measure of the oxygen consuming capacity of the biologically degradable and unbiodegradable organic materials present in wastewater.

C4.2.9. <u>Conventional Pollutants</u>. BOD₅, total suspended solids (TSS), oil and grease, total coliforms, pH, COD, copper, zinc, iron, manganese, chromium, mineral oils, animal and vegetable oils & fats, phenols, nitrogen, and phosphorus.

C4.2.10. <u>Daily Discharge</u>. The "discharge of a pollutant" measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement (e.g., concentration) "daily discharge" is calculated as the average measurement of the pollutant over the day.

C4.2.11. <u>Direct Discharge</u>. Any "discharge of pollutants" other than an indirect discharge.

C4.2.12. Discharge of a Pollutant. Any addition of any pollutant or combination of pollutants to Waters of Japan from any "point source."

C4.2.13. <u>Domestic Wastewater Treatment System (DWTS)</u>. Any DoD or GoJ facility designed to treat wastewater before its discharge to Waters of Japan and in which the majority of such wastewater is made up of domestic sewage.

C4.2.14. <u>Effluent Limitation</u>. Any restriction imposed on quantities, discharge rates, and concentrations of pollutants that are ultimately discharged from point sources into Waters of Japan.

C4.2.15. <u>Existing Source</u>. A source in operation, or under construction, prior to 1 October 1994, unless it is subsequently substantially modified, that discharges pollutants.

C4.2.16. <u>Indirect Discharge</u>. An introduction of pollutants in process wastewater to a DWTS.

C4.2.17. <u>Industrial Activities Associated with Storm Water</u>. Activities that may contribute pollutants to storm water runoff or drainage during wet weather events. (see Table C4.T3, "Best Management Practices").

C4.2.18. <u>Industrial Wastewater Treatment System (IWTS)</u>. Any DoD facility other than a DWTS designed to treat process wastewater before its discharge to Waters of Japan.

C4.2.19. <u>Interference</u>. Any addition of any pollutant or combination of pollutant discharges that inhibits or disrupts the DWTS, its treatment processes or operations, or its sludge handling processes, use or disposal.

C4.2.20. <u>Maximum Daily Discharge Limitation</u>. The highest allowable daily discharge based on volume as well as concentration.

C4.2.21. <u>New Source</u>. A source built or substantially modified on or after 1 October 1994 that directly or indirectly discharges pollutants to the wastewater system.

C4.2.22. <u>Point Source</u>. Any discernible, confined, and discrete conveyance, including, but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, or rolling stock; but not including vessels, aircraft, or any conveyance that merely collects natural surface flows of precipitation.

C4.2.23. <u>Pollutant</u>. Includes, but is not limited to, the following: dredged spoil; solid waste; incinerator residue; filter backwash; sewage; garbage; sewage sludge; munitions; chemical waste; biological material; radioactive material; heat; wrecked or discarded equipment; rock; sand; cellar dirt; and industrial, municipal, and agricultural waste discharged into water.

C4.2.24. <u>Process Wastewater</u>. Any water which during manufacturing or processing, comes into direct contact with, or results from the production or use of, any raw material, intermediate product, finished product, by-product, or waste product.

C4.2.25. <u>Regulated Facilities</u>. Those facilities for which criteria are established under this Chapter, such as DWTS, IWTS, or industrial discharges.

C4.2.26. <u>Storm Water</u>. Run-off and drainage from wet weather events such as rain, snow, ice, sleet, or hail.

C4.2.27. <u>Substantial Modification</u>. Any modification to a facility, the cost of which exceeds \$1,000,000, regardless of funding source.

C4.2.28. <u>Total Suspended Solids (TSS)</u>. The pollutant parameter total filterable suspended solids.

C4.2.29. <u>Total Toxic Organics (TTO)</u>. The summation of all quantifiable values >0.01 mg/L for the toxic organics in Table C4.T1, "Components of Total Toxic Organics."

C4.2.30. <u>Waters of Japan</u>. Surface water including the territorial seas recognized under customary international law, including:

C4.2.30.1. All waters which are currently used, were used in the past, or may be susceptible to use in commerce.

C4.2.30.2. Waters which are or could be used for recreation or other purposes.

C4.2.30.3. Waters from which fish or shellfish are or could be taken and sold.

C4.2.30.4. Waters which are used or could be used for industrial purposes by industries.

C4.2.30.5. Waters including lakes, rivers, streams (including intermittent streams), sloughs, prairie potholes, or natural ponds.

C4.2.30.6. Tributaries of waters identified in paragraphs C4.2.30.1 through C4.2.30.5 of this definition.

C4.2.30.7. <u>Exclusions to Waters of Japan</u>. Domestic or industrial waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of this Chapter, are not Waters of Japan. This exclusion applies only to manmade bodies of water that were neither originally Waters of Japan nor resulted from impoundment of Waters of Japan.

C4.3. <u>CRITERIA</u>

C4.3.1. Effluent Limitations for Direct Dischargers of Conventional Pollutants

C4.3.1.1. All new sources of pollutants directly discharged to Waters of Japan will comply with the following effluent limitations:

C4.3.1.1.1. <u>BOD</u>₅

C4.3.1.1.1.1. The 30-day average will not exceed 30 mg/L.

C4.3.1.1.1.2. The 7-day average will not exceed 45 mg/L.

C4.3.1.1.1.3. CBOD₅ may be substituted for BOD₅ as measured above. The C BOD₅ limit, if substituted for the parameter BOD₅, should be at least 5 mg/L less than each numerical limit for the 30-day and 7-day average for the BOD₅ limit. The CBOD₅ test procedure suppresses the nitrification component in the BOD₅ test procedure, thereby reducing the value or effects and lowering the oxygen demand. When CBOD₅ is substituted for BOD₅, the following limits will apply:

C4.3.1.1.1.3.1. The 30-day average will not exceed 25 mg/L.

C4.3.1.1.1.3.2. The 7-day average will not exceed 40 mg/L.

C4.3.1.1.2. <u>TSS</u>

C4.3.1.1.2.1. The 30-day average will not exceed 30 mg/L.

C4.3.1.1.2.2. The 7-day average will not exceed 45 mg/L.

С4.3.1.1.3. <u>рН</u>

C4.3.1.1.3.1. Effluent pH values for discharges to rivers and lakes will be maintained between 6.0 and 8.6.

C4.3.1.1.3.2. Effluent pH values for discharges to sea areas will be maintained between 6.0 and 9.0.

C4.3.1.2. All existing sources of pollutants directly discharged to Waters of Japan will comply with the following effluent limitations:

C4.3.1.2.1. <u>BOD5</u>

C4.3.1.2.1.1. The 30-day average will not exceed 45 mg/L.

C4.3.1.2.1.2. The 7-day average will not exceed 65 mg/L.

C4.3.1.2.2. <u>TSS</u>

C4.3.1.2.2.1. The 30-day average will not exceed 45 mg/L.

C4.3.1.2.2.2. The 7-day average will not exceed 65 mg/L.

С4.3.1.2.3. <u>рН</u>

C4.3.1.2.3.1. Effluent pH values for discharges to rivers and lakes will be maintained between 6.0 and 8.6.

C4.3.1.2.3.2. Effluent pH values for discharges to sea areas will be maintained between 6.0 and 9.0.

C4.3.1.3. <u>Additional Effluent Limitation</u>. All new and existing sources of pollutants directly discharged to Waters of Japan will comply with the following effluent limitations, in addition to those in Tables C4.T5 through C4.T30, as applicable. In the case where two standards for the same parameter are given, the more protective standard shall prevail.

	Maximum	Daily Average
Pollutant	(mg/L)	(mg/L)
COD (for direct discharge into sea areas, lakes or marshes)	160	120
Total Coliform		3,000/mL
Copper	3	
Zinc	2	
Iron (Soluble)	10	
Manganese (Soluble)	10	
Chromium	2	
Mineral Oils (N-hexane Extract)	5	
Animal/Vegetable Oils & Fats (N-hexane Extract)	30	
Phenols	5	
Nitrogen	120	60
Phosphorus	16	8

C4.3.1.4. All new and existing non-domestic sources of pollutants directly discharged to Waters of Japan (including direct discharges from IWTS) will also comply with the hazardous substances effluent limitations in Table C4.T4 in addition to those in Tables C4.T31 through C4.T34, as applicable. In the case where two standards for the same parameter are given, the more protective standard shall prevail.

C4.3.1.5. <u>Monitoring</u>. Monitoring requirements apply to all regulated facilities. Samples shall be collected at the point of discharge to the Waters of Japan. The monitoring frequency (including both sampling and analysis) is:

C4.3.1.5.1. BOD5, TSS, and pH. The monitoring frequency (including both sampling and analysis) is given in Table C4.T2, "Monitoring requirements",

C4.3.1.5.2. Additional Effluent Limitation in C4.3.1.3 apply to regulated facilities which discharge volume is $\geq 50 \text{m}^3/\text{day}$ (on average), unless indicated in Tables C4.T5 through C4.T30. The monitoring frequency is one or more times per year.

C4.3.1.5.3. The monitoring frequency of the hazardous substances effluent limitations in C4.3.1.4 is one or more times per year.

C4.3.1.6. <u>Recordkeeping Requirements</u>. The following monitoring and recordkeeping requirements are BMPs and apply to all facilities. Retain records for 3 years.

C4.3.1.6.1. The effluent, concentration, or other measurement specified for each regulated parameter.

C4.3.1.6.2.	The daily volume of effluent discharge from each point source.
C4.3.1.6.3.	Test procedures for the analysis of pollutants.
C4.3.1.6.4.	The date, exact place, and time of sampling and/or measurements.
C4.3.1.6.5. measurements.	The name of the person who performed the sampling and/or

C4.3.1.6.6. The date of analysis.

C4.3.1.7. <u>Complaint System</u>. A system for investigating water pollution complaints from individuals or the appropriate GoJ water pollution control authorities will be established, involving the DoD Lead Environmental Component, as appropriate.

C4.3.1.8. <u>Limited Effluent Standards</u>. If DWTS plant capacity is between 0.0 and 0.049 million gallons per day (MGD), monthly sample must comply with level for 30-day average.

C4.3.2. Effluent Limitations For Non-Categorical Industrial Indirect Dischargers

C4.3.2.1. <u>Effluent Limits</u>. The following effluent limits will apply to all discharges of pollutants to DWTSs and associated collection systems from process wastewater for which categorical standards have not been established (see paragraph C4.3.3 for a list of categorical standards).

C4.3.2.1.1. <u>Solid or Viscous Pollutants</u>. The discharge of solid or viscous pollutants that would result in an obstruction to the domestic wastewater treatment plant flow is prohibited.

C4.3.2.1.2. Ignitability and Explosivity

C4.3.2.1.2.1. The discharge of wastewater with a closed cup flashpoint of $<70^{\circ}$ C (158°F) is prohibited.

C4.3.2.1.2.2. The discharge of waste with any of the following characteristics is prohibited:

C4.3.2.1.2.2.1. A liquid solution that contains more than 24% alcohol by volume and has a flash point $<70^{\circ}$ C (158°F).

C4.3.2.1.2.2.2. A non-liquid which under standard temperature and pressure can cause a fire through friction.

C4.3.2.1.2.2.3. An ignitable compressed gas.

C4.3.2.1.2.2.4. An oxidizer, such as peroxide.

C4.3.2.1.3. <u>Reactivity and Fume Toxicity</u>. The discharge of any of the following wastes is prohibited:

C4.3.2.1.3.1. Wastes that are normally unstable and readily undergo violent changes without detonating;

C4.3.2.1.3.2. Wastes that react violently with water;

C4.3.2.1.3.3. Wastes that form explosive mixtures with water or forms toxic gases or fumes when mixed with water;

C4.3.2.1.3.4. Cyanide or sulfide waste that can generate potentially harmful toxic fumes, gases, or vapors;

C4.3.2.1.3.5. Waste capable of detonation or explosive decomposition or reaction at standard temperature and pressure;

C4.3.2.1.3.6. Wastes that contain explosives regulated by Chapter 5, "Hazardous Material"; and

C4.3.2.1.3.7. Wastes that produce any toxic fumes, vapors, or gases with the potential to cause safety problems or harm to workers.

C4.3.2.1.4. <u>Corrosivity</u>. It is prohibited to discharge pollutants with the potential to be structurally corrosive to the DWTS. In addition, no discharge of wastewater below a pH of 5.0 is allowed.

C4.3.2.1.5. <u>Oil and Grease</u>. The discharge of the following oils that can pass through or cause interference to the DWTS is prohibited: petroleum oil, non-biodegradable cutting oil, and products of mineral oil origin.

C4.3.2.1.6. <u>Spills and Batch Discharges (slugs)</u>. Activities or installations that have a significant potential for spills or batch discharges will develop a slug prevention plan. Each plan must contain the following minimum requirements:

C4.3.2.1.6.1. Description of discharge practices, including non-routine batch discharges;

C4.3.2.1.6.2. Description of stored chemicals;

C4.3.2.1.6.3. Plan for immediately notifying the DWTS of slug discharges and discharges that would violate prohibitions under this Chapter, including procedures for subsequent written notification within 5 days;

C4.3.2.1.6.4. Necessary practices to prevent accidental spills. This would include proper inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site runoff, and worker training;

C4.3.2.1.6.5. Proper procedures for building containment structures or equipment;

C4.3.2.1.6.6. Necessary measures to control toxic organic pollutants and solvents; and

C4.3.2.1.6.7. Proper procedures and equipment for emergency response, and any subsequent plans necessary to limit damage suffered by the treatment plant or the environment.

C4.3.2.1.7. <u>Trucked and Hauled Waste</u>. The discharge of trucked and hauled waste into the DWTS, except at locations specified by the DWTS operator, is prohibited.

C4.3.2.1.8. <u>Heat</u>. Heat in amounts that inhibit biological activity in the DWTS resulting in interference, but in no case in such quantities that the temperature of the process water at the DWTS exceeds 40° C (104° F).

C4.3.2.2. <u>Complaint System</u>. A system for investigating water pollution complaints from the appropriate GoJ water pollution control authorities will be established, involving the DoD Lead Environmental Component as appropriate.

C4.3.3. <u>Effluent Limitations for Categorical Industrial Dischargers (Direct or Indirect)</u>. Any installations which have activities that fall into any of the industrial categories listed below must comply with the following effluent limitations (i.e., either direct or indirect discharge limitations at the source of the discharge). For most categories, the effluent limitations are the same for new and existing activities. Where differences in limitations exist, activities constructed or sustainability modified on or after 1 October 1994 will meet the limitations for new activities.

C4.3.3.1. <u>Electroplating</u>. The following discharge standards apply to electroplating operations in which metal is electroplated on any basis material and to related metal finishing operations as set forth in the various subparts. These standards apply whether such operations are conducted in conjunction with electroplating, independently, or as part of some other operation. Electroplating subparts are identified as follows:

C4.3.3.1.1. <u>Electroplating of Common Metals</u>. Discharges of pollutants in process waters resulting from the process in which a material is electroplated with copper, nickel, chromium, zinc, tin, lead, cadmium, iron, aluminum, or any combination thereof.

C4.3.3.1.2. <u>Electroplating of Precious Metals</u>. Discharges of pollutants in process waters resulting from the process in which a material is plated with gold, silver, iridium, palladium, platinum, rhodium, ruthenium, or any combination thereof.

C4.3.3.1.3. <u>Anodizing</u>. Discharges of pollutants in process waters resulting from the anodizing of ferrous and nonferrous materials.

C4.3.3.1.4. <u>Metal Coatings</u>. Discharges of pollutants in process waters resulting from the chromating, phosphating, or immersion plating on ferrous and nonferrous materials.

C4.3.3.1.5. <u>Chemical Etching and Milling</u>. Discharges of pollutants in process waters resulting from the chemical milling or etching of ferrous and nonferrous materials.

C4.3.3.1.6. <u>Electroless Plating</u>. Discharges of pollutants in process waters resulting from the electroless plating of a metallic layer on a metallic or nonmetallic substrate.

C4.3.3.1.7. <u>Printed Circuit Board Manufacturing</u>. Discharges of pollutants in process waters resulting from the manufacture of printed circuit boards, including all manufacturing operations required or used to convert an insulating substrate to a finished printed circuit board.

C4.3.3.1.8. The following discharge standards apply to facilities in the above electroplating subparts which directly or indirectly discharge <38,000 liters per day (10,000 gallons per day):

Pollutant	Daily Maximum ¹ (mg/L)	4-day Average (mg/L)
Cadmium	0.03	
Cyanide	1	
Fluorine, and its compounds ²	50	
Lead	0.1	
Total Toxic Organics	4.57	
Ammonia, ammonium compounds, nitrate and nitrite compounds ²	300	
Boron, and its compounds ² (discharge into public waters other than oce	40 ean)	

Notes:

1. If standards with different permissible limits are specified, the maximum permissible limit shall apply to the effluent discharged from the installation. However, these rules shall not apply to the standards of Boron and its compounds, Fluorine and its compounds for new factories in headwater areas of Tokyo Prefecture provided in Table C4.T31.

2. Standard for Ammonia, Boron, and Fluorine is transitional and in effect until 30 June 2016.

C4.3.3.1.9. The following discharge standards apply to facilities in the above electroplating subparts that directly or indirectly discharge \geq 38,000 liters per day (10,000 gallons per day):

Pollutant	Daily Maximum ¹ (mg/L)	4-day Average (mg/L)
Ammonia, ammonium compounds, nitrate and nitrite compounds ²	300	
Boron, and its compounds ² (discharge into public waters other than	40 ocean)	
Cadmium	0.03	
Chromium (VI)	0.5	
Copper ³	4.5 (3)	2.7
Cyanide	1	
Fluorine and its compounds ^{2, 4}	50 (15)	
Lead	0.1	
Nickel	4.1	2.6
Zinc ⁵	4.2	2.6
Total Metals	10.5	6.8
Total Toxic Organics	2.13	

Notes:

1. If standards with different permissible limits are specified, the maximum permissible limit shall apply to the effluent discharged from the installation. However, these rules shall not apply to the standards of Boron and its compounds, Fluorine and its compounds for new factories in headwater areas of Tokyo Prefecture provided in Table C4.T31.

2. Standards for ammonia, boron and fluorine are transitional and in effect until 30 June 2016.

3. When discharging \geq 50,000 liters, the daily maximum standard for Copper is 3 mg/L.

4. When discharging ≥50,000 liters and discharging to public waters other than ocean, the daily maximum standard for Fluorine and its compounds is 15 mg/L.

5. Standards for Zinc is transitional and in effect until 10 December 2016.

C4.3.3.1.10. In addition to the above standards, facilities that electroplate precious metals and that directly or indirectly discharge \geq 38,000 liters per day (10,000 gallons per day) must comply with the following standard:

	Daily Maximum	4-day Average
Pollutant	(mg/L)	(mg/L)
Silver	1.2	0.7

C4.3.3.2. <u>Monitoring</u>. Monitoring of categorical industrial dischargers (including both sampling and analysis) will be accomplished quarterly and will include all parameters that are specified in the paragraph of this Chapter dealing with industrial dischargers. Samples should be collected at the point of discharge prior to any mixing with the receiving water. Sampling for TTO may not be required if the commanding officer determines that no discharge of

concentrated toxic organics into the wastewater has occurred and the facility has implemented a TTO management plan.

C4.3.3.2.1. All direct discharges of pollutants by categorical industrial dischargers to Waters of Japan will also comply with the hazardous substances effluent limitations in Table C4.T4 and C4.3.1.3. The monitoring frequency is one or more times per year.

C4.3.4. Storm Water Management

C4.3.4.1. Develop and implement storm water pollution prevention (P2) plans (SWPPP) for activities listed in Table C4.T3, "Best Management Practices." Update the SWPPP annually using in-house resources.

C4.3.4.2. <u>Employee Training</u>. Personnel who handle hazardous substances or perform activities that could contribute pollution in wet weather events, should be trained in appropriate BMPs. Such training should stress P2 principles and awareness of possible pollution sources, including non-traditional sources such as sediment, nitrates, pesticides, and fertilizers.

C4.3.5. <u>Septic System</u>. Discharge to a septic system of wastewater containing industrial pollutants in levels that will inhibit biological activity is prohibited. Known discharges of industrial pollutants to existing septic systems shall be eliminated, and appropriate actions should be taken to eliminate contamination. Siting of such systems is addressed in Chapter 3, "Drinking Water."

C4.3.6. <u>Sludge Disposal</u>. All sludge produced during the treatment of wastewater will be disposed in accordance with the guidance under Chapter 6, "Hazardous Waste" or Chapter 7, "Solid Waste," as appropriate.

Volatile Organics						
Acrolein (Propenyl)	1,2-trans-Dichloroethene	1,3-Dichloropropylene (1,3-Dichloropropene)				
Acrylonitrile	Chloroform (trichloromethane)	Benzene				
Methyl chloride (chloromethane)	1,1,1-Trichloroethane	2-Chloroethyl vinyl ether (mixed)				
Methyl bromide (bromomethane)	1,1,2-Trichloroethane	Tetrachloroethene				
Vinyl Chloride (chloroethylene)	Bromodichloromethane	Toluene				
Chloroethane	1,1,2,2-Tetrachloroethane	Chlorobenzene				
Methylene Chloride (9 dichloromethane)	1,2-Dichloropropane	Ethylbenzene				
1,1-Dichloroethene	Bromoform (tribromomethane)	Carbon Tetrachloride (tetrachloromethane)				
1,1-Dichloroethane	Trichloroethene					
1,2-Dichloroethane	Dibromochloromethane					
	Base/Neutral Extracta	ble Organics				
N-nitrosodimethylamine	Acenaphthylene	Pyrene				
bis (2-chloroethyl) ether	Dimethyl Phthalate	Benzidine				
1,3-Dichlorobenzene	2,6-Dinitrotoluene	Butyl benzyl phthalate				
1,4-Dichlorobenzene	Acenaphthene	1,2-benzoanthracene (benzo (a) anthracene)				
1,2-Dichlorobenzene	2,4-Dinitrotoluene	Chrysene				
bis(2-chloroisopropyl)-ether	Fluorene	3,3-Dichlorobenzidine				
Hexachloroethane	4-Chlorophenyl phenyl ether	bis (2-ethylhexyl) phthalate				
N-nitrosodi-n-propylamine	Diethyl phthalate	Di-n-octyl phthalate				
Nitrobenzene	1,2-Diphenylhydrazine	3,4-Benzofluoranthene (benzo (b) fluoranthene)				
Isophorone	N-nitrosodiphenylamine	11,12-Benzofluoranthene (benzo (k) fluoranthene)				
bis (2-chloroethoxy) methane	4-Bromophenyl phenyl ether	Benzo (a) pyrene (3,4-benzopyrene)				
1,2,4-trichlorobenzene	Hexachlorobenzene	Indeno (1,2,3-cd) pyrene (2,3-o-phenylene pyrene)				
Naphthalene	Phenanthrene	1,2,5,6-Dibenzanthracene (dibenezo (a,h) anthracene)				
Hexachlorobutadiene	Anthracene	1,12-Benzoperylene (benzo (g,h,i) perylene)				
Hexachlorocyclopentadiene	Di-n-butyl phthalate					
2-Chloronaphthalene	Fluoranthene					
	Acid Extractables	Organics				
2-Chlorophenol	2,4-Dichlorophenol	4-Nitrophenol				
Phenol	4,6-Dinitro-o-cresol	p-Chloro-m-cresol				
2-Nitrophenol	2,4,6-Trichlorphenol	Pentachlorophenol				
2,4-Dimethylphenol	2,4-Dinitrophenol					
	PCBs/Pestic	ides				
PCB-1242 (Arochlor 1242)	Alpha-Endosulfan	(p,p-TDE)				
PCB-1254 (Arochlor 1254) Beta-Endosulfan		Aldrin				
PCB-1221 (Arochlor 1221)	Endosulfan sulfate	Chlordane (technical mixture and metabolites)				
PCB-1232 (Arochlor 1232)	Alpha-BHC	Dieldrin				
PCB-1248 (Arochlor 1248)	Beta-BHC	Endrin				
PCB-1260 (Arochlor 1260)	Delta-BHC	Endrin aldehyde				
PCB-1016 (Arochlor 1016)	Gamma-BHC	Toxaphene				
	4,4-DDT	Heptachlor				
	4,4-DDE (p,p-DDX)	Heptachlor Epoxide (BHC-hexachlorocyclohexane)				

Table C4.T1.	Components of Te	otal Toxic Organics
--------------	------------------	---------------------

Table C4.T2. Monitoring Requirements

Plant Capacity (MGD)	Monitoring Frequency	
0.001 – 0.99	Monthly	
1.0 - 4.99	Weekly	
≥ 5.0	Daily	

Activity	Best Management Practice
Aircraft Ground Support Equipment	Perform maintenance/repair activities inside
Maintenance	Use drip pans to capture drained fluids
	Cap hoses to prevent drips and spills
Aircraft/runway deicing	Perform anti-icing before the storm
	Put critical aircraft in hangars/shelters
Aircraft/vehicle fueling operations	Protect fueling areas from the rain
	Provide spill response equipment at fueling station
Aircraft/vehicle maintenance &	Perform maintenance/repair activities inside
repair	Use drip pans to capture drained fluids
Aircraft/vehicle washing	Capture wash water and send to wastewater treatment plant
	Treat wash water with oil water separator before discharge
Bulk fuel storage areas	Use dry camlock connectors to reduce fuel loss
	Capture spills with drip pans when breaking connections
	Curb fuel transfer areas, treat with oil water separator
Construction activities	Construct sediment dams/silt fences around construction sites
Corrosion control activities	Capture solvent/soaps used to prepare aircraft for painting
	Perform corrosion control activities inside
Hazardous material storage	Store hazardous materials inside or under cover
	Reduce use of hazardous materials
Outdoor material storage areas	Cover and curb salt, coal, urea piles
_	Store product drums inside or under cover
	Reduce quantity of material stored outside
Outdoor painting/depainting	Capture sandblasting media for proper disposal
operations	Capture paint clean up materials (thinners, rinsates)
Pesticide operations	Capture rinse water when mixing chemicals
	Store spray equipment inside
Power production	Capture leaks and spills from power production equipment using drip pans, etc.
Vehicle storage yards	Check vehicles in storage for leaks and spills
	Use drip pans to capture leaking fluids

Table C4.T3. Best Management Practices

Pollutant	Maximum Allowable Limit (mg/L)
Cadmium, and its compounds	0.03
Cyanide	1
Organic phosphorus compounds (parathion, methyl	1
parathion, methyl demeton and EPN only)	1
Lead, and its compounds	0.1
Chromium (VI)	0.5
Arsenic, and its compounds	0.1
Total mercury	0.005
Alkyl mercury compounds	ND (Detection limit is 0.0005)
PCBs	0.003
Trichloroethylene	0.3
Tetrachloroethylene	0.1
Dichloromethane	0.2
Carbon tetrachloride	0.02
1,2-dichloroethane	0.04
1,1-dichloroethylene	1
cis-1,2-dichloroethylene	0.4
1,1,1-trichloroethane	3
1,1,2-trichloroethane	0.06
1,3-dichloropropene	0.02
Thiuram	0.06
Simazine	0.03
Thiobencarb	0.2
Benzene	0.1
Selenium, and its compounds	0.1
Boron, and its compounds	10 (Non-Coastal Area) / 230 (Coastal Area)
Fluorine, and its compounds	8 (Non-Coastal Area) / 15 (Coastal Area)
Ammonia, ammonium compounds, nitrate and nitrite	100
compounds	Sum of ammonia,-N X 0.4, nitrate-N and nitrite-N)
1,4-Dioxane	0.5
Dioxins	0.00000001 (10 pg-TEQ/L)

Table C4.T4. Hazardous Substance Effluent Standards for Direct Discharges from Non-Domestic sources (including IWTS).

1. If documentation is available that explicitly states that one or more of the above substances are never introduced into the system, then those substances may be excluded from monitoring requirements.

Table C4.T5. Effluent Standards for Facilities Located in Saitama Prefecture (Effluent	
Discharged $\geq 10m^3$ /day)	

Item	Category	Allowable limit ²	Allowable limit ³
	1) Night soil treatment facility (\geq 501 and \leq 2,000 people)	60 mg/L	25 (20) mg/L
	2) Night soil treatment facility (>2,000 people)	30 mg/L	25 (20) mg/L
BOD	3) Factory or business establishment with specified facility other than those specified in 1 and 2 above or terminal sewage treatment facility	25 (20) mg/L	
	4) Night soil treatment facility (≥ 201 and ≤ 500 people) in the designated area		25 (20) mg/L
	1) Night soil treatment facility (\geq 501 and \leq 2,000 people)	80 (70) mg/L	60 (50) mg/L
	2) Night soil treatment facility (>2,000 people)	70 (60) mg/L	60 (50) mg/L
TSS	TSS 3) Factory or business establishment with specified facility other than those specified in 1 and 2 above or terminal sewage treatment facility) mg/L
	4) Night soil treatment facility (≥ 201 and ≤ 500 people) in the designated area	80 (70) mg/L	60 (50) mg/L
Phenol	Factory or business establishment with specified facility other than night soil treatment facility or terminal sewage treatment facility	1 n	ng/L

1. Values shown in brackets are daily average.

2. Applies if specified establishment was established prior to 1 April 1992.

3. Applies if specified establishment was established on or after 1 April 1992 (Except those under construction prior to 1 April 1992).

Table C4.T6. Effluent Standards for Facilities Located in Saitama Prefecture (Effluent	
Discharged $<10m^3/day$)	

Item	Allowable Limit
рН	5.8-8.6
BOD	150 (120) mg/L
COD	160(120) mg/L
TSS	180 (150) mg/L

Notes:

1. Values shown in brackets are daily average.

2. The levels listed in this table shall be applied to the effluent discharged from a factory or business establishment that has any of the following facilities, specified facilities in the specified areas, or a water treatment facility that treats the effluent discharged from such a factory or business establishment:

- Food preparation facility installed in a central kitchen (except a facility established for a business establishment with a total floor space $< 500 \text{ m}^2$)

- Food preparation facility installed for boxed lunch preparation or catering business (except a facility established for a business establishment with a total floor space $< 360 \text{ m}^2$)

- Food preparation facility installed in restaurants (except a facility established for a business establishment with a total floor space $< 420 \text{ m}^2$)

- Food preparation facility installed in a noodle or sushi restaurant, cafeteria or other food service restaurant that does not serve common food items (except a facility established for a business establishment with a total floor space $< 630 \text{ m}^2$)

- Food preparation facility installed in a upper grade Japanese-style restaurant, bar, cabaret, night club or other similar food service establishment where fixtures, equipment, and/or ball room are provided for entertaining clients (except a facility established for a business establishment with a total floor space < 1,500 m²)

- Food preparation, cleaning, or bathing facility in a hospital with 300 or more beds

- Car washing facility installed for automobile disassembling or maintenance business (except a facility established for a business establishment with a total floor space $< 800 \text{ m}^2$ and an automated car washing facility)

- Night soil treatment facility

3. The effluent standards for BOD shall be applied to effluents discharged into public water area other than lake areas, and the effluent standards for COD shall be applied to effluents discharged into lake areas.

Table C4.T7. Effluent Standards for Factories located in Tokyo Prefecture (except Harmful Substances, Nitrogen and Phosphorus Content)

Item		Headwater Area		General Water Area A		General Water Area B		Islands and surrounding Sea Area	
		Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day
pН		iii / du y	III / du y	iii / du y	5	3 - 8.6	iii / du y	iii / du y	iii / duy
Appear	ance			No abno	rmal colorii	ng or bubble	formation		
Temper	ature				\leq	40°C			
-	New establishment	20 n	ng/L	20 mg/L	25 mg/L	20 mg/L	25 mg/L	20 mg/L	25 mg/L
BOD	Existing establishment	20 mg/L	25 mg/L	20 mg/L	25 mg/L	Type 1 factory 20 mg/L Type 2	Type 1 factory 25 mg/L Type 2	Type 1 factory 20 mg/L	Type 1 factory 25 mg/L
						factory 60 mg/L	factory 70 mg/L	Type 2 160 i	ng/L
	New establishment	20 n	ng/L	_		20 mg/L	25 mg/L	20 mg/L	25 mg/L
COD	Existing	20 mg/L 25 mg/L		_		Type 1 factory 20 mg/L	Type 1 factory 25 mg/L	Type 1 factory 20 mg/L	Type 1 factory 25 mg/L
	establishment					Type 2 factory 60 mg/L	Type 2 factory 70 mg/L	Type 2 160 1	factory mg/L
	New establishment	40 n	ng/L	40 mg/L	50 mg/L	40 mg/L	50 mg/L	40 mg/L	50 mg/L
TSS	Existing establishment	40 mg/L	50 mg/L	40 mg/L	50 mg/L	Type 1 factory 40 mg/L	Type 1 factory 50 mg/L	Type 1 factory 40 mg/L	Type 1 factory 50 mg/L
	estuorisimient					• •	factory ng/L	Type 2 200 i	
N-hexane extracts content (Mineral oil content)		5 1			mg/L				
N-hexane extract content (Animal and vegetable fat content)			5 mg/L		10 n	ng/L	30 n	ng/L	
Phenols content			1 mg/L			5 mg/L			
Copper content 1 mg		ng/L	3 mg/L						

Zinc content	2 mg/L ⁶
Dissolved iron content	10 mg/L
Dissolved manganese content	10 mg/L
Chromium content	2 mg/L
Total coliform	3,000/mL

1. All levels provided in this table are allowable limits.

- 2. The BOD shall be applied to effluents discharged into public water areas other than sea areas, lakes or reservoirs, and the COD shall be applied to effluent discharged into sea areas, lakes and reservoirs.
- 3. New Factory means one of the following factories. Existing Factory means those other than new factories.
- Factory that was built by construction started on or after 1 April 2001.
- Factory that was already built or under construction on 31 March 2001 and changed the structure of its effluent source facility on or after 1 April 2001 resulting in increased effluent.
- 4. Type 1 Factory means an existing factory listed below. Type 2 Factory is an existing factory other than Type 1 Factory.
 - Factory built by construction started between 2 April 1972 and 31 March 2001.
 - Factory (except those discharge less than 50m³/day) that was already built or under construction on 1 April 1972 and has changed the structure of its effluent source facility between 1 July 1978 and 31 March 2001 resulting in increased effluent.
- 5. For a Type 2 factory with daily effluent volume less than 50m³, the levels provided in this table shall not be applied to any item other than pH, appearance, temperature or chromium content.
- 6. If a Type 2 factory that has a night soil treatment tank with a holding capacity greater than 200 people discharges effluents less than $50m^3/day$, the levels provided in this table shall not be applied.

Item		Sewage treatment plant	Facility with night soil treatment facility (except night soil treatment tank)	
		All water areas		
pН		5.8	8 - 8.6	
Appear	ance	No abnormal colori	ng or bubble formation	
Temper	rature	< _	40°C	
BOD	New establishment	15 mg/L	20 mg/L	
вор	Existing establishment	25 mg/L	40 mg/L	
	New establishment	15 mg/L	30 mg/L	
COD	Existing establishment	35 mg/L	40 mg/L	
TSS	New establishment	10 mg/L	40 mg/L	

Table C4.T8. Effluent Standards for Designated Workplaces located in Tokyo Prefecture (except Harmful Substances, Nitrogen and Phosphorus Content)

Existing establishmen	t 60 mg/L	80 mg/L					
N-hexane extracts content (Mineral oil content)		5 mg/L					
N-hexane extract content (Animal and vegetable fat content)	3	60 mg/L					
Phenols content		5 mg/L					
Copper content		3 mg/L					
Zinc content		2 mg/L					
Dissolved iron conter	t	0 mg/L					
Dissolved manganese content	I	10 mg/L					
Chromium content		2 mg/L					
Total coliform	3	,000/mL					

1. All levels provided in this table are allowable limits.

- 2. The BOD shall be applied to effluents discharged into public water areas other than sea areas, lakes or reservoirs, and the COD shall be applied to effluent discharged into sea areas, lakes and reservoirs.
- 3. New Designated Workplace means one of the following workplaces. Existing Designated Workplace means those other than new designated workplaces.
 - Designated Workplace that was built by construction started on or after 1 April 2001.
 - Designated Workplace that was already built or under construction on 31 March 2001 and changed the structure of its effluent source facility on or after 1 April 2001 resulting in increased effluent.
- 4. If an existing sewage treatment plant has an advanced facility capable of both nitrogen and phosphorus treatment and a filtration facility or a treatment facility equivalent to a filtration facility installed in all sewage treatment facilities, the levels for new establishments shall be applied from the day these facilities start operating.

Table C4.T9. Effluent Standards for Designated Workplaces located in Tokyo Prefecture (except Harmful Substances, Nitrogen and Phosphorus Content)

					Facilit	y with nigh	t soil treatme	ent tank					
	Ite	em	Headwa	ter Area ²		Vater Area	General Wa			ls and g Sea Area ²			
	nH		Holding capacity ≥ 501	Holding capacity 201 - 500	Holding capacity ≥ 501	Holding capacity 201 - 500	Holding capacity ≥ 501	Holding capacity 201 - 500	Holding capacity ≥ 501	Holding capacity 201 - 500			
рН						5.8	- 8.6						
Appear	rance		No abnormal coloring or bubble formation										
Tempe	rature	•				≤ 2	40°C						
	New esta	v blishment	20 n	ng/L	20 mg/L	25 mg/L	20 mg/L	25 mg/L	25 mg/L	30 mg/L			
BOD	blishment	Built or under construction on or after 1 October 1991	30 n	ng/L	30 r	ng/L	30 n	ng/L	40 r	ng/L			
	Existing establishment	Built or under construction on or before 30 September 1991	30 mg/L	80 mg/L	30 mg/L	80 mg/L	40 mg/L	80 mg/L	40 mg/L	120 mg/L			
	New establishment		20 mg/L		—		20 mg/L	25 mg/L	25 mg/L	30 mg/L			
COD	shment	Built or under construction on or after 1 October 1991	30 mg/L		_		30 n	ng/L	40 mg/L				
	Existing establishment	Built or under construction on or before 30 September 1991	30 mg/L	80 mg/L	-	_	40 mg/L	80 mg/L	40 mg/L	120 mg/L			
	New esta	v blishment	40 n	ng/L	40 mg/L	50 mg/L	40 mg/L	50 mg/L	50 mg/L	60 mg/L			
TSS	blishment	Built or under construction on or after 1 October 1991	60 n	ng/L	60 r	ng/L	60 n	ng/L	80 r	ng/L			
	Existing establishment	Built or under construction on or before 30 September 1991	60 mg/L	150 mg/L	60 mg/L	150 mg/L	80 mg/L	150 mg/L	80 mg/L	150 mg/L			
N-hexane extracts content (Mineral oil content)					5 r	ng/L							

N-hexane extract content (Animal and vegetable fat content)	30 mg/L
Phenols content	5 mg/L
Copper content	3 mg/L
Zinc content	2 mg/L
Dissolved iron content	10 mg/L
Dissolved manganese content	10 mg/L
Chromium content	2 mg/L
Total coliform	3,000/mL

1. All levels provided in this table are allowable limits.

- 2. The BOD shall be applied to effluents discharged into public water areas other than sea areas, lakes or reservoirs, and the COD shall be applied to effluent discharged into sea areas, lakes and reservoirs.
- 3. The levels provided in C4.T10 shall be applied to the BOD, COD and TSS of an existing facility that has a single treatment tank at this time.

Table C4.T10. Effluent Standards for Designated Workplaces located in Tokyo Prefecture
(except Harmful Substances, Nitrogen and Phosphorus Content)

		Facility with night soil treatment tank														
		y built o pril 197		construc	ction	-	Facility built or under construction on or before 30 September 1991 (excluding those listed in the left column) Facility under construction on or after 1 October 1991									
	Discharging Discharging into into other area Specified Area				to	Specified Area i					Discharging into Specified Area	Discha into otl area				
Holding capacity	201 - 500	≥ 501	201 - 500	501 - 2000	≥ 2001	201 - 500	$\geq \frac{1}{2}$	501	201 - 500		01 - 000	≥2	001	2	201	
Water Area			water a			All water area	Edo River and Tama River water area	Other water area	All water area	Edo River and Tama River water area	Other water area	Edo River and Tama River water area	Other water area	All water area	Edo River and Tama River water area	Other water area
BOD	80 mg/L	40 mg/L	120 mg/L	80 mg/L	40 mg/L	80 mg/L	30 mg/L	40 mg/L	120 mg/L	30 mg/L	80 mg/L	30 mg/L	40 mg/L	30 mg/L	30 mg/L	40 mg/L
COD	80 mg/L	40 mg/L	120 mg/L	80 mg/L	40 mg/L	80 mg/L	_	40 mg/L	120 mg/L	—	80 mg/L	_	40 mg/L	30 mg/L	_	40 mg/L
TSS	150 mg/L	80 mg/L	150 mg/L	150 mg/L	80 mg/L	150 mg/L	60 mg/L	80 mg/L	150 mg/L	60 mg/L	150 mg/L	60 mg/L	80 mg/L	60 mg/L	60 mg/L	80 mg/L

Notes:

1. All levels provided in this table are allowable limits.

2. "Specified Area" means a ward of Tokyo Prefecture excluding the following wards: Chiyoda-ku, Chuo-ku, Minato-ku, Shinjuku-ku, Bunkyo-ku, Taito-ku, Sumida-ku, Koto-ku, Shinagawa-ku, Meguro-ku, Ota-ku, Setagaya-ku, Shibuya-ku, Nakano-ku, Suginami-ku, Toshima-ku, Kita-ku, Arakawa-ku.

Table C4.T11. Effluent Standards for Designated Workplaces located in Tokyo Prefecture (except Harmful Substances, Nitrogen and Phosphorus Content)

		F	acilities oth	er than those	e addressed in	n Tables C4.T	8, C4.T9 and	C4.T10		
		Headwat	er Area	General W	ater Area A	General W	ater Area B			
	Item		Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Islands and surrounding Sea Area		
pН					5.8 - 8	3.6				
Appea	rance			No abnorr	nal coloring o	or bubble form	nation			
Tempe	erature				$\leq 40^{\circ}$	C				
BOD	New establishment	20 m	g/L	20 mg/L	25 mg/L	20 mg/L	25 mg/L	25 mg/L		
вор	Existing establishment	20 mg/L	25 mg/L	20 mg/L	25 mg/L	60 mg/L	70 mg/L	160 mg/L		
COD	New establishment	20 mg/L		—		20 mg/L	25 mg/L	25 mg/L		
COD	Existing establishment	20 mg/L	25 mg/L	_		60 mg/L	90 mg/L	160 mg/L		
TSS	New establishment	40 m	ıg/L	40 mg/L	50 mg/L	40 mg/L	50 mg/L	50 mg/L		
155	Existing establishment	40 mg/L	50 mg/L	40 mg/L	50 mg/L	90 r	ng/L	200 mg/L		
	ane extracts t (Mineral oil t)		5 mg/L							
conten	ane extract at (Animal and ble fat content)		30 mg/L							
Pheno	ls content				5 mg/	'L				
Coppe	r content				3 mg/	Ľ				
Zinc content					2 mg/	′L				
Dissol	ved iron content	10 mg/L								
Dissol ¹ conten	ved manganese t				10 mg	:/L				
Chromium content					2 mg/	'L				
Total o	coliform				3,000/1	mL				

Notes:

1. All levels provided in this table are allowable limits.

2. The BOD shall be applied to effluents discharged into public water areas other than sea areas, lakes or reservoirs, and the COD shall be applied to effluent discharged into sea areas, lakes and reservoirs.

3. The levels provided in this table shall not be applied to a Designated Workplace with daily effluent volume less than 50m³.

- 4. New Factory means one of the following factories:
 - Factory that was built by construction started on or after 1 April 2001.
 - Factory that was already built or under construction on 31 March 2001 and changed the structure of its effluent source facility on or after 1 April 2001 resulting in increased effluent.
- 5. Existing Factory means those other than new factories.

	I Food, beverages tobacco and feed manufacturing Item industry		and feed cturing	2 Chemical industry		3 Iron and steel industry		U		5 Manufacturing industry other than those listed in 1 - 4		those listed
	item	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	Effluent volume ≥ 500 m ³ /day	Effluent volume < 500 m ³ /day	in 1 - 5
5	New establishment	20 mg/L	25 mg/L	16 mg/L		16 n			25 mg/L	16 mg/L	20 mg/L	30 mg/L
Nitro	establishment Existing establishment	20 mg/L	30 mg/L	20 n	ng/L	20 n	ng/L	25 mg/L	30 mg/L	20 mg/L	25 mg/L	40 mg/L
iorus	New establishment	2 mg/L	3 mg/L	1 mg/L	1.5 mg/L	1 mg/L	1.5 mg/L	1 mg/L	1.5 mg/L	1 mg/L	2 mg/L	4 mg/L
Phosph	New establishment Existing establishment	3 mg/L	6 mg/L	1.5 mg/L	2 mg/L	2 m	g/L	1.5 mg/L	3 mg/L	2 mg/L	4 mg/L	6 mg/L

Table C4.T12. Effluent Standards for Factories located in Tokyo Prefecture (Nitrogen and Phosphorus Content)

Notes:

1. All levels provided in this table are allowable limits.

- 2. Levels shall not be applied to a factory with daily effluent volume less than 50m³.
- 3. This standard shall be applied exclusively to a factory that discharges effluents into headwater areas or general water areas A or B (except Sakai River water area).
- 4. If a factory belongs to multiple industry types, the smallest level among levels concerned shall be applied.
- 5. New Factory means one of the following. Existing Factory means those other than new factories.
 - Factory that was built by construction started on or after 1 April 2001.
 - Factory (except those with daily effluent volume less than 50m³) that was already built or under construction on 31 March 2001 and has changed the structure of its effluent source facility on or after 1 April 2001 resulting in increased effluent.
- 6. The standards for new factories shall be applied to the following existing factories:
 - Factory that was already built or under construction between 1 April 1999 and 31 March 2001.
 - Factory (except those with daily effluent volume less than 50m³) that was already built or under construction on 31 March 2001 and changed the structure of its effluent source facility between 1 April 1999 and 31 March 2001, resulting in increased effluent.

Table C4.T13. Effluent Standards for Designated Workplaces located in Tokyo Prefecture (Nitrogen and Phosphorus Content)

		1		2		3	4
		Sewage	Facility wit	Livestock barn	Designated		
	Item	treatment plant	Facility with night soil	Facility with night	soil treatment tank		Workplaces
			treatment facility (except night soil treatment tank)	Single treatment tank		except those listed in 1-3	
Nitrogen	New establishment	20 mg/L	20 mg/L			120 mg/L	30 mg/L
Nitro	Existing establishment	30 mg/L	40 m	g/L	120 mg/L	120 mg/L	40 mg/L
orus	New establishment	1 mg/L		16 mg/L	4 mg/L		
Phosphorus	Existing establishment	3 mg/L	3 mg/L	6 mg/L	16 mg/L	16 mg/L	6 mg/L

Notes:

1. All levels provided in this table are allowable limits.

- 2. Levels shall not be applied to a factory with daily effluent volume less than 50m³.
- 3. This standard shall be applied exclusively to a Designated Workplace that discharges effluents into headwater areas or general water areas A or B (except Sakai River water area).
- 4. New Designated Workplace means one of the following workplaces. Existing Designated Workplace means those other than new designated workplaces.
 - Designated Workplace that was built by construction started on or after 1 April 2001.
 - Designated Workplace that was already built or under construction on 31 March 2001 and changed the structure of its effluent source facility on or after 1 April 2001 resulting in increased effluent.
- 5. The standards for new factories shall be applied to the following existing factories;
- Designnated Workplace that was already built or under construction between 1 April 1999 and 31 March 2001.

6. If an existing sewage treatment plant has an advanced facility capable of both nitrogen and phosphorus treatment and a filtration facility or a treatment facility equivalent to a filtration facility installed in all sewage treatment facilities, the levels for new establishments shall be applied from the day these facilities start operating.

Table C4.T14. Effluent Standards for Facilities Located in Kanagawa Prefecture (Effluent
Discharged $\geq 50 \text{m}^3/\text{day}$)

PH Water quality preservation lakes (Area A) Image: Constraint of the second s	Item	Water Area ⁴	Allowable limit ²	Allowable limit ³
PIN Area B 5.8-8.6 5.8-8.6 Sea Area 5.8-8.6 5.8-8.6 5.8-8.6 BOD Water quality preservation lakes (Area A) 20 (15) mg/L 5 (3) mg/L Area B 60 (50) mg/L 15 (10) mg/L Area B 60 (50) mg/L 25 (20) mg/L 5 (3) mg/L Water quality preservation lakes (Area A) 20 (15) mg/L 5 (3) mg/L Water quality preservation lakes (Area A) 20 (15) mg/L 15 (10) mg/L Water quality preservation lakes (Area A) 60 (50) mg/L 15 (5) mg/L Water quality preservation lakes (Area A) 50 (35) mg/L 15 (3) mg/L Water quality preservation lakes (Area A) 70 (40) mg/L 70 (40) mg/L Sea Area 90 (70) mg/L 70 (40) mg/L 3mg/L Water quality preservation lakes (Area A) 3mg/L 3mg/L Water quality preservation lakes (Area A) 3mg/L 3mg/L Oil) Sea Area 90 (70) mg/L 5 (20) mg/L Oil) Sea Area 3mg/L 3mg/L Mater quality preservation lakes (Area A) 3mg/L 3mg/L		Water quality preservation lakes (Area A)		
Area B 5.8-8.6 Sea Area 5.8-8.6 BOD Water quality preservation lakes (Area A) 20 (15) mg/L 5 (3) mg/L Area B 60 (50) mg/L 25 (20) mg/L 5 (20) mg/L Sea Area Water areas other than water quality preservation lakes (Area A) 25 (20) mg/L 15 (10) mg/L Kea Area Water quality preservation lakes (Area A) 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (5) mg/L Sea Area 60 (50) mg/L 15 (20) mg/L 25 (20) mg/L 15 (5) mg/L Water quality preservation lakes (Area A) 50 (35) mg/L 15 (3) mg/L 26 (20) mg/L 15 (3) mg/L 30 (20) mg/L 35 (20) mg/L 30 (70) mg/L <td>ъU</td> <td>Water areas other than water quality preservation lakes (Area A)</td> <td></td> <td></td>	ъU	Water areas other than water quality preservation lakes (Area A)		
BOD Water quality preservation lakes (Area A) 20 (15) mg/L 5 (3) mg/L Water areas other than water quality preservation lakes (Area A) 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L COD Water quality preservation lakes (Area A) 20 (15) mg/L 5 (3) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L Water quality preservation lakes (Area A) 50 (35) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (3) mg/L Mater areas other than water quality preservation lakes (Area A) 50 (35) mg/L 15 (3) mg/L Sea Area 90 (70) mg/L 70 (40) mg/L 70 (40) mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L Water quality preservation lakes (Area A) 3mg/L 3mg/L 3mg/L Vegetable fait Sea Area 10mg/L 5mg/L 3mg/L Vegetable fait Sea Area 0.5mg/L 0.005mg/L 0.005mg/L <td>рп</td> <td>Area B</td> <td></td> <td></td>	рп	Area B		
BOD Water areas other than water quality preservation lakes (Area A) 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 5 (3) mg/L COD Water quality preservation lakes (Area A) 20 (15) mg/L 5 (3) mg/L Kater areas other than water quality preservation lakes (Area A) 25 (20) mg/L 5 (20) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L Sea Area 60 (50) mg/L 25 (20) mg/L 15 (10) mg/L TSS Water quality preservation lakes (Area A) 50 (35) mg/L 15 (5) mg/L Sea Area 90 (70) mg/L 70 (40) mg/L 70 (40) mg/L Sea Area 90 (70) mg/L 70 (40) mg/L 3mg/L Mineral Water quality preservation lakes (Area A) 3mg/L 3mg/L Water areas other than water quality preservation lakes (Area A) 3mg/L 3mg/L 3mg/L Oil) Sea Area 10mg/L 5mg/L 3mg/L 3mg/L Water areas other than water quality preservation lakes (Area A) 5mg/L 3mg/L 3mg/L N-Hexane Water quality preservatio		Sea Area	5.8-8.6	5.8-8.6
		Water quality preservation lakes (Area A)	20 (15) mg/L	5 (3) mg/L
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	POD	Water areas other than water quality preservation lakes (Area A)	25 (20) mg/L	15 (10) mg/L
$ \begin{array}{c} \mbox{COD} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	BOD	Area B	60 (50) mg/L	25 (20) mg/L
$\begin{array}{c cccc} \mbox{COD} & Water areas other than water quality preservation lakes (Area A) 25 (20) mg/L 15 (10) mg/L Area B 60 (50) mg/L 25 (20) mg/L 35 (20) mg/L 36 (20) mg/L$		Sea Area		
$ \begin{array}{c cccc} \label{eq:constraint} \begin{tabular}{ ccccc cccc ccccccccccccccccccccccccc$		Water quality preservation lakes (Area A)	20 (15) mg/L	5 (3) mg/L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COD	Water areas other than water quality preservation lakes (Area A)	25 (20) mg/L	15 (10) mg/L
Mater quality preservation lakes (Area A)50 (35) mg/L15 (5) mg/LTSSWater areas other than water quality preservation lakes (Area A)70 (40) mg/L35 (20) mg/LN-HexaneSea Area90 (70) mg/L70 (40) mg/LN-HexaneWater quality preservation lakes (Area A)3mg/L3mg/LWater areas other than water quality preservation lakes (Area A)3mg/L3mg/LOil)Sea Area3mg/L3mg/LN-HexaneWater areas other than water quality preservation lakes (Area A)3mg/L3mg/L(MineralArea B	COD	Area B	60 (50) mg/L	25 (20) mg/L
TSS Water areas other than water quality preservation lakes (Area A) 70 (40) mg/L 35 (20) mg/L Area B 90 (70) mg/L 70 (40) mg/L 70 (40) mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water areas other than water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water quality preservation lakes (Area A) 5mg/L 3mg/L Vegetable fat) Sea Area 10mg/L 5mg/L 3mg/L Vegetable fat) Sea Area 10mg/L 5mg/L 3mg/L Vegetable fat) Sea Area 0.005mg/L 0.005mg/L 0.005mg/L Vegetable fat) Sea Area 0.5mg/L 0.5mg/L 0.5mg/L Vater areas other than water quality preservation lakes (Area A) 0.005mg/L 0.5mg/L 0.5mg/L Vater areas other than water quality preservation lakes (Area A) 1mg/L 1mg/L 1mg/L Yeare B 0.5mg/L 0.5mg/L 0.5mg/L 0.5mg/L 0.5mg/L<		Sea Area	60 (50) mg/L	25 (20) mg/L
TSS Water areas other than water quality preservation lakes (Area A) 70 (40) mg/L 35 (20) mg/L Area B 90 (70) mg/L 70 (40) mg/L 70 (40) mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water areas other than water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L Vegetable fat) Sea Area 10mg/L 5mg/L 3mg/L Vegetable fat) Sea Area 10mg/L 5mg/L 3mg/L Water quality preservation lakes (Area A) 0.005mg/L 0.005mg/L 0.005mg/L Water quality preservation lakes (Area A) 0.5mg/L 0.5mg/L 0.5mg/L Yeare areas other than water quality preservation lakes (Area A) 1mg/L 1mg/L Yeare areas other than water quality preservation lakes (Area A) 1mg/L 1mg/L Yeare areas other than water quality preservation lakes (Area A) 1mg/L 1mg/L Yeare areas other than water quality p		Water quality preservation lakes (Area A)	50 (35) mg/L	15 (5) mg/L
Area B 90 (70) mg/L 70 (40) mg/L Sea Area 90 (70) mg/L 70 (40) mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L Mineral Area B 3mg/L 3mg/L 3mg/L Oil) Sea Area 3mg/L 3mg/L 3mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane Water quality preservation lakes (Area A) 3mg/L 3mg/L Vestracts Water quality preservation lakes (Area A) 5mg/L 3mg/L Area B 10mg/L 5mg/L 3mg/L Area B 0.005mg/L 5mg/L 3mg/L Yeet areas other than water quality preservation lakes (Area A) 0.005mg/L 0.005mg/L Water quality preservation lakes (Area A) 0.005mg/L 0.005mg/L Area B 0.5mg/L 0.005mg/L 0.5mg/L 0.5mg/L Area B 0.5mg/L 0.5mg/L 0.005mg/L 0.005mg/L Area B 0.5mg/L 0.05mg/L 0.005mg/L 1mg/L 1mg/L Karea Pacia 0.5mg/L 0.5mg/L 0.5mg/L <td>TOO</td> <td>Water areas other than water quality preservation lakes (Area A)</td> <td>70 (40) mg/L</td> <td></td>	TOO	Water areas other than water quality preservation lakes (Area A)	70 (40) mg/L	
Sea Area90 (70) mg/L70 (40) mg/LN-Hexane extractsWater quality preservation lakes (Area A)3mg/L3mg/LWater areas other than water quality preservation lakes (Area A)3mg/L3mg/LOil)Sea Area	188		· · · · · · · · · · · · · · · · · · ·	
N-Hexane extracts (Mineral Water quality preservation lakes (Area A) 3mg/L 3mg/L 3mg/L (Mineral Area B 3mg/L 3mg/L 3mg/L N-Hexane extracts Water quality preservation lakes (Area A) 3mg/L 3mg/L N-Hexane extracts Water quality preservation lakes (Area A) 3mg/L 3mg/L (Animal and vegetable fat) Sea Area 10mg/L 5mg/L Sea Area 10mg/L 5mg/L 5mg/L Phenols Water quality preservation lakes (Area A) 0.005mg/L 0.05mg/L Water quality preservation lakes (Area A) 0.005mg/L 0.05mg/L 0.5mg/L Copper Water quality preservation lakes (Area A) 0.05mg/L 0.5mg/L 0.5mg/L Sea Area 0.5mg/L 0.5mg/L 0.5mg/L 1mg/L 1mg/L Sea Area 0.5mg/L 1mg/L 1mg/L 1mg/L Sea Area 0.5mg/L 1mg/L 1mg/L 1mg/L Sea Area 0.5mg/L 1mg/L 1mg/L 1mg/L Sea Area 1mg/L 1mg		Sea Area		
extracts (Mineral Oil)Water areas other than water quality preservation lakes (Area A)3 mg/LOil)Sea Area	N-Hexane	Water quality preservation lakes (Area A)	V V	\ <i>\</i>
(Mineral Oil)Area BImage: Constraint of the second seco			Ŭ	Ŭ
Oil)Sea AreaImage: Sea AreaN-Hexane extractsWater quality preservation lakes (Area A)3mg/L3mg/L(Animal and vegetable fat)Area B10mg/L5mg/LSea Area10mg/L5mg/L5mg/LWater quality preservation lakes (Area A)0.005mg/L5mg/LWater quality preservation lakes (Area A)0.005mg/L0.005mg/LWater quality preservation lakes (Area A)0.05mg/L0.005mg/LArea B0.5mg/L0.5mg/L0.5mg/LSea Area0.5mg/L0.5mg/L0.5mg/LSea Area0.5mg/L0.5mg/L0.5mg/LSea Area0.5mg/L0.5mg/L0.5mg/LSea Area0.5mg/L0.5mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LYarea B1mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LVater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/LOissolvedWater areas other than water quality preservation lakes (Area A)1mg/LOissolvedWater areas other than water quality preservation lakes (Area A)1mg/LOissolvedWater areas other than water quality preservation lakes (Area A)1mg/LOissolved <td>(Mineral</td> <td></td> <td></td> <td>- 0</td>	(Mineral			- 0
N-Hexane extracts (Animal and vegetable fat)Water quality preservation lakes (Area A)3mg/L3mg/L3mg/LMater areas other than water quality preservation lakes (Area A)5mg/L3mg/L3mg/LSea Area10mg/L5mg/L5mg/LWater quality preservation lakes (Area A)0.005mg/L0.005mg/LWater areas other than water quality preservation lakes (Area A)0.005mg/L0.005mg/LPhenolsWater areas other than water quality preservation lakes (Area A)0.05mg/L0.005mg/LWater areas other than water quality preservation lakes (Area A)0.05mg/L0.005mg/LSea Area0.5mg/L0.5mg/L0.5mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LKarea B1mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LMater quality preservation lakes (Area A)1mg/L1mg/LYarea B3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A	\	Sea Area		
extracts (Animal and vegetable fat)Water areas other than water quality preservation lakes (Area A) $5mg/L$ $3mg/L$ $Area B$ $10mg/L$ $5mg/L$ $5mg/L$ $Phenols$ $Sea Area$ $10mg/L$ $5mg/L$ $Phenols$ $Water quality preservation lakes (Area A)$ $0.005mg/L$ $0.005mg/L$ $Area B$ $0.5mg/L$ $0.005mg/L$ $0.005mg/L$ $Sea Area$ $0.5mg/L$ $0.005mg/L$ $0.005mg/L$ $Copper$ $Water quality preservation lakes (Area A)$ $1mg/L$ $1mg/L$ $Mater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B0.5mg/L0.5mg/L0.5mg/LCopperWater quality preservation lakes (Area A)1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B1mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LMater quality preservation lakes (Area A)1mg/L1mg/LMater quality preservation lakes (Area A)1mg/L1mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedArea B0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedArea B0.3mg/L0.3mg/LMater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/L$,	Water quality preservation lakes (Area A)	3mg/L	3mg/L
				-
vegetable fat)Sea Area10mg/L5mg/LPhenolsWater quality preservation lakes (Area A)0.005mg/L0.005mg/LArea B0.5mg/L0.5mg/L0.5mg/LArea B0.5mg/L0.5mg/L0.5mg/LCopperWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B0.5mg/L0.5mg/L0.5mg/LSea Area0.5mg/L1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LSea Area B1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LKarea B3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolved <td></td> <td></td> <td>U U</td> <td>-</td>			U U	-
PhenolsWater quality preservation lakes (Area A)0.005 mg/LWater areas other than water quality preservation lakes (Area A)0.05 mg/L0.005 mg/LArea B0.5 mg/L0.5 mg/L0.5 mg/LSea Area0.5 mg/L0.5 mg/L0.5 mg/LWater quality preservation lakes (Area A)1 mg/L1 mg/LMater areas other than water quality preservation lakes (Area A)1 mg/L1 mg/LArea B1 mg/L1 mg/L1 mg/LSea Area1 mg/L1 mg/L1 mg/LKater areas other than water quality preservation lakes (Area A)1 mg/L1 mg/LSea Area1 mg/L1 mg/L1 mg/LWater quality preservation lakes (Area A)1 mg/L1 mg/LSea Area3 mg/L1 mg/L1 mg/LWater areas other than water quality preservation lakes (Area A)1 mg/L1 mg/LSea Area3 mg/L1 mg/L1 mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3 mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1 mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1 mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3 mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3 mg/LMater quality preservation lakes (Area A)0.3 mg/L0.3 mg/LSea Area1 mg/L1 mg/L1 mg/LMater areas other than water quality preservation lak				-
PhenolsWater areas other than water quality preservation lakes (Area A)0.05mg/L0.005mg/LArea B0.5mg/L0.5mg/L0.5mg/LSea Area0.5mg/L0.5mg/L0.5mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/LKater quality preservation lakes (Area A)1mg/L1mg/LYater quality preservation lakes (Area A)3mg/L1mg/LYater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)1mg/L0.3mg/LYater quality preservation lakes (Area A)0.3mg/L3mg/L3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L0.3mg/LMater quality preservation lakes (Are	C ,		<u> </u>	eing E
PrincipArea B0.5mg/L0.5mg/LSea Area0.5mg/L0.5mg/LCopperWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B1mg/L1mg/LSea Area1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LSea Area3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L1mg/LMater quality preservation lakes (Area A)0.1mg/L1mg/L1mg/LArea B1mg/L1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1m			U	0.005mg/L
Sea Area0.5mg/L0.5mg/LCopperWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B1mg/L1mg/LSea Area1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LSea Area3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L <td>Phenols</td> <td></td> <td></td> <td>-</td>	Phenols			-
CopperWater quality preservation lakes (Area A)Img/LImg/LWater areas other than water quality preservation lakes (Area A)Img/LImg/LArea B1mg/L1mg/LSea Area1mg/L1mg/LWater quality preservation lakes (Area A)1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LArea B3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LSea Area3mg/L1mg/L1mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L3mg/L3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L3mg/L3mg/LVater areas other than water quality preservation lakes (Area A)0.3mg/L3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LMater quality preservation lakes (Area A)0.3mg/L0.3mg/L3mg/LSea AreaImg/L1mg/L1mg/L1mg/LSea AreaImg/L1mg/L1mg/L1mg/LSea AreaImg/L1mg/L1mg/L1mg/LSea AreaImg/L1mg/L1mg/L1mg/LSea AreaImg/L1mg/L1mg/L1mg/LSea AreaImg/L1mg/L				
CopperWater areas other than water quality preservation lakes (Area A)Img/LImg/LArea BImg/LImg/LSea AreaImg/LImg/LWater quality preservation lakes (Area A)Img/LImg/LWater areas other than water quality preservation lakes (Area A)Img/LImg/LArea B3mg/LImg/LImg/LSea Area3mg/LImg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LMater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LMater areas other than water quality preservation lakes (Area A)1mg/L1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/L1mg/L1mg/LChromiumWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/L<				-
CopperArea BImg/LSea AreaImg/LWater quality preservation lakes (Area A)Img/LWater areas other than water quality preservation lakes (Area A)Img/LArea B3mg/LImg/LSea Area3mg/LImg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/LObjectWater areas other than water quality preservation lakes (Area A)0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L1mg/LSea Area1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/LMater quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea B1mg/L1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A				-
Sea AreaImg/LZincWater quality preservation lakes (Area A)Img/LImg/LWater areas other than water quality preservation lakes (Area A)Img/LImg/LArea B3mg/LImg/LImg/LSea Area3mg/LImg/LImg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L3mg/LDissolvedSea Area0.3mg/L3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/L1mg/LMater quality preservation lakes (Area A)0.1mg/L1mg/L1mg/LArea BWater areas other than water quality preservation lakes (Area A)0.1mg/L1mg/LArea BB0.1mg/L0.1mg/L1mg/L1mg/LMater areas other than water quality preservation lake	Copper		Ting/E	-
ZincWater quality preservation lakes (Area A)Img/LImg/LWater areas other than water quality preservation lakes (Area A)Img/LImg/LArea B3mg/LImg/LSea Area3mg/LImg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LSea Area3mg/L3mg/L3mg/LSea Area0.3mg/L3mg/L3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedMater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L1mg/LMarea B1mg/L1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/L1mg/LMater quality preservation lakes (Area A)0.1mg/L1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/L1mg/LArea BMater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea BMater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/L <td></td> <td></td> <td></td> <td>-</td>				-
ZincWater areas other than water quality preservation lakes (Area A)Img/LImg/LArea B3mg/L1mg/LSea Area3mg/L1mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedArea B3mg/L3mg/LSea Area3mg/L3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/LDissolvedWater quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)1mg/L0.3mg/LMater quality preservation lakes (Area A)1mg/L1mg/L1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L1mg/LKater areas other than water quality preservation lakes (Area A)0.1mg/L1mg/LKater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea BWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea B </td <td></td> <td></td> <td>1mg/L</td> <td>-</td>			1mg/L	-
ZincArea B3mg/L1mg/LSea Area3mg/L1mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LSea Area3mg/L3mg/L3mg/LDissolvedKater quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L3mg/LDissolvedWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)1mg/L0.3mg/LDissolvedWater quality preservation lakes (Area A)1mg/L1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L1mg/LSea Area1mg/L1mg/L1mg/LKater quality preservation lakes (Area A)0.1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LKater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea BSater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LK			-	-
Sea Area3mg/L1mg/LDissolved ironWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolved ironWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LSea Area3mg/L3mg/LDissolved manganeseWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolved manganeseWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolved manganeseWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LChromiumSea Area1mg/L1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/L1mg/L1mg/LArea B0.1mg/L0.1mg/L1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea BMater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/L	Zinc			
Dissolved ironWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolved ironWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LArea B3mg/LSea Area3mg/LDissolved manganeseWater quality preservation lakes (Area A)0.3mg/LArea B0.3mg/LSea Area0.3mg/LWater areas other than water quality preservation lakes (Area A)0.3mg/LDissolved manganeseWater areas other than water quality preservation lakes (Area A)1mg/LSea Area1mg/L1mg/LSea Area1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/LMater areas other than water quality preservation lakes (Area A)1mg/L			<u> </u>	
Dissolved ironWater areas other than water quality preservation lakes (Area A)1 mg/L0.3 mg/LArea B3mg/L3mg/LSea Area3mg/LDissolved manganeseWater quality preservation lakes (Area A)0.3 mg/LArea B0.3 mg/L0.3 mg/LVater areas other than water quality preservation lakes (Area A)1 mg/L0.3 mg/LDissolved manganeseWater areas other than water quality preservation lakes (Area A)1 mg/L0.3 mg/LSea Area1 mg/L1 mg/L1 mg/L1 mg/LSea Area1 mg/L1 mg/L1 mg/LWater quality preservation lakes (Area A)0.1 mg/L1 mg/LWater areas other than water quality preservation lakes (Area A)0.1 mg/LWater areas other than water quality preservation lakes (Area A)1 mg/L0.1 mg/LArea B0.1 mg/L0.1 mg/L0.1 mg/L			<u> </u>	
ironArea B3mg/LSea Area3mg/LDissolved manganeseWater quality preservation lakes (Area A)0.3mg/LOissolved manganeseWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LSea Area1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/L	Dissolved			
Sea Area3mg/LDissolved manganeseWater quality preservation lakes (Area A)0.3mg/L0.3mg/LVater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LArea B1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/L1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/L			Ting/E	
Dissolved manganeseWater quality preservation lakes (Area A)0.3mg/L0.3mg/LDissolved manganeseWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LArea B1mg/L1mg/L1mg/LSea Area1mg/L1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/L0.1mg/LArea BImg/L0.1mg/L0.1mg/L				
Dissolved manganeseWater areas other than water quality preservation lakes (Area A)1mg/L0.3mg/LArea B1mg/L1mg/L1mg/LSea Area1mg/L1mg/LWater quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)0.1mg/LWater areas other than water quality preservation lakes (Area A)1mg/LWater areas other than water quality preservation lakes (Area A)1mg/LArea B1mg/L0.1mg/L			0.3 mg/L	Ŭ
manganese Area B Img/L Img/L Sea Area 1mg/L 1mg/L 1mg/L Water quality preservation lakes (Area A) 0.1mg/L 0.1mg/L Water areas other than water quality preservation lakes (Area A) 1mg/L 0.1mg/L Area B 0.1mg/L 0.1mg/L	Dissolved			
Sea Area Img/L Img/L Water quality preservation lakes (Area A) 0.1mg/L 0.1mg/L Water areas other than water quality preservation lakes (Area A) 1mg/L 0.1mg/L Area B 0.1mg/L 0.1mg/L 0.1mg/L				
Water quality preservation lakes (Area A) 0.1mg/L Water areas other than water quality preservation lakes (Area A) 1mg/L 0.1mg/L Area B	Ballese			-
Water areas other than water quality preservation lakes (Area A) 1mg/L 0.1mg/L Area B				11116/12
Area B				0.1mg/I
	Chromium		11115/12	0.1116/12
		Sea Area		

Item	Water Area ⁴	Allowable limit ²	Allowable limit ³
	Water quality preservation lakes (Area A)		1,000/mL
Total	Water areas other than water quality preservation lakes (Area A)		
Coliform	Area B		
	Sea Area		

1. Values shown in brackets are daily average.

- 2. Applies if specified establishment was established prior to 1 November 1971.
- 3. New establishments mean specified establishments established on or after 1 November 1971 (except those under construction prior to 1 November 1971).

4. Water Area Categories:

Water Area A: Chitose River (upstream of junction where Ageji Stream connects), Niizaki River (upstream of the upstream border of Nizakigawa Bridge on the Tokaido Shinkansen Line), Haya River, Sakawa River (upstream of Iizumi Intake Weir), Kaname River (upstream of the upstream border of Tsuchiya Bridge), Sagami River (upstream of Samukawa Intake Weir), and rivers and water channels connecting to these rivers

Water Quality Preservation Lakes: Lake Ashi, Lake Tanzawa, Lake Sagami, Lake Tsukui, Lake Okusagami, Lake Miyagase, and the rivers and water channels connecting to these lakes.

Water Area B: Waters of Japan other than that covered by Water Area A and sea area.

5. The effluent standards for BOD shall be applied to effluents discharged into public water area other than lakes or reservoirs, and the effluent standards for COD shall be applied to effluents discharged into lakes, reservoirs or sea areas.

Table C4.T15. Effluent Standards for Facilities Located in Kanagawa Prefecture (Effluent Discharged $< 50m^3/day$)

Item	Water Area ⁴	Allowable limit ²	Allowable limit ³
	Water quality preservation lakes (Area A)		5.8-8.6
	Water quality preservation lakes (Area A)	5.8-8.6	
	Water areas other than water quality preservation lakes (Area A)		5.8-8.6
pН	Water areas other than water quality preservation lakes (Area A)	5.8-8.6	
рп	Area B		5.8-8.6
	Area B	5.8-8.6	
	Sea Area		5.8-8.6
	Sea Area	5.8-8.6	
	Water quality preservation lakes (Area A)		5 (3) mg/L
	Water quality preservation lakes (Area A)	20 (15) mg/L	
	Water areas other than water quality preservation lakes (Area A)		15 (10) mg/L
BOD	Water areas other than water quality preservation lakes (Area A)	25 (20) mg/L	
BOD	Area B		
	Area B		
	Sea Area		
	Sea Area		
	Water quality preservation lakes (Area A)		5 (3) mg/L
	Water quality preservation lakes (Area A)	20 (15) mg/L	
	Water areas other than water quality preservation lakes (Area A)		15 (10) mg/L
COD	Water areas other than water quality preservation lakes (Area A)	25 (20) mg/L	
COD	Area B		
	Area B		
	Sea Area		
	Sea Area		

TSS	Water quality preservation lakes (Area A)		15 (5) mg/L
	Water quality preservation lakes (Area A)	50 (35) mg/L	
	Water areas other than water quality preservation lakes (Area A)		35 (20) mg/L
	Water areas other than water quality preservation lakes (Area A)	70 (40) mg/L	
	Area B		
	Area B		
	Sea Area		
	Sea Area		

- 1. Values shown in brackets are daily average.
- 2. Applies if specified establishment was established prior to 1 November 1971.
- 3. New establishments mean specified establishments established on or after 1 November 1971 (except those under construction prior to 1 November 1971).

4. Water Area Categories:

Water Area A: Chitose River (upstream of junction where Ageji Stream connects), Niizaki River (upstream of the upstream border of Nizakigawa Bridge on the Tokaido Shinkansen Line), Haya River, Sakawa River (upstream of Iizumi Intake Weir), Kaname River (upstream of the upstream border of Tsuchiya Bridge), Sagami River (upstream of Samukawa Intake Weir), and rivers and water channels connecting to these rivers Water Quality Preservation Lakes: Lake Ashi, Lake Tanzawa, Lake Sagami, Lake Tsukui, Lake Okusagami, Lake Miyagase, and the rivers and water channels connecting to these lakes Water Area B: Waters of Japan other than that covered by Water Area A and sea area

5. The effluent standards for BOD, COD and TSS shall be applied exclusively to effluents discharged from specified establishments that belong to the dyed and finished textiles industry. The effluent standards for BOD shall be applied to effluents discharged into public water area other than lakes or reservoirs, and the effluent standards for COD shall be applied to effluents discharged into lakes and reservoirs.

Item	Type of Facility		Allowable Limit
	Only a night sail treatment tenk installed	New establishment ¹	25 (20) mg/L
BOD	Only a night soil treatment tank installed	Other than new establishment	40 (30) mg/L
Night soil or terminal sewage treatment facility other than night soil treatment tank installed			25 (20) mg/L
	Only a night soil treatment tank installed	New establishment ¹	25 (20) mg/L
COD	Only a hight soll treatment tank instance	Other than new establishment	40 (30) mg/L
COD	Night soil or terminal sewage treatment facility other than night soil treatment tank installed		25 (20) mg/L
	Only a night soil treatment tank installed	New establishment ¹	70 (50) mg/L
TSS	Only a hight son treatment tank instance	Other than new establishment	80 (60) mg/L
155	Night soil or terminal sewage treatment facility other than night soil treatment tank installed		70 (50) mg/L

Table C4.T16. Special Effluent Standard for the discharged from specified establishments that have only a night soil or terminal sewage treatment facility installed at Kanagawa Prefecture

Notes:

1. New establishments mean specified establishments established on or after 1 April 1998 (except those under construction prior to 1 April 1998).

2. Values shown in brackets are daily average.

3. The effluent standards for BOD shall be applied to effluents discharged into public water area other than lakes, reservoirs or sea areas, and the effluent standards for COD shall be applied to effluents discharged into lakes, reservoirs or sea areas.

Table C4.T17. Special Effluent Standards for discharged from specified establishments⁴ that have only specified facility in the designated area installed to Tokyo Bay at Kanagawa Prefecture

Item	Type of Facilities		Allowable Limit
	New establishments ²		40 (30) mg/L
BOD	Other than new establishment	Combined treatment ³	80 (60) mg/L
		Other than combined treatment	120 (90) mg/L
	New establishments ²		40 (30) mg/L
COD	Other than new establishment	Combined treatment ³	80 (60) mg/L
		Other than combined treatment	120 (90) mg/L
	New establishments ²		80 (60) mg/L
TSS	Other than new establishment	Combined treatment ³	160 (120) mg/L
		Other than combined treatment	180 (140) mg/L

Notes:

1. Values shown in brackets are daily average.

2. New establishments mean specified establishments established on or after 1 April 1992 (except those under construction prior to 31 March 1992).

3. Combined treatment means the specified establishments which have specified facility in the specified area which treats domestic effluent (wastewater generated by daily activities such as cooking, laundry, and bathing other than factory effluent or other special wastewater) combined with night soil

4. "Specified facility in the designated area" means a night soil treatment tank with a holding capacity between 201 and 500 people.

5. These standards shall not be applied to the effluent of specified establishments that discharge average daily effluent $< 50 \text{ m}^3$.

6. The effluent standards for BOD shall be applied to effluents discharged into public water area other than sea areas, and the effluent standards for COD shall be applied to effluents discharged into sea areas.

Item	Type of Facilities	Allowable Limit ⁴	Allowable Limit ⁵
	Chemical industry other than those listed above	20 (10) mg/L	16 (8) mg/L
	Iron and steel industry that uses nitric acid pickling of stainless steel	100 mg/L	80 (40) mg/L
	Iron and steel industry that does not use nitric acid pickling of stainless steel	20 (10) mg/L	16 (8) mg/L
	Other non-ferrous metal primary refining industry		100 (50) mg/L
ent	Electroplating industry, immersion plating industry, and alumite		
Cont	treatment industry that use surface treatment facility using nitrogen and its compounds		100 (50) mg/L
Nitrogen Content	Automobile and automotive accessory manufacturing industry that use surface treatment facility using nitrogen and its compounds	50 (25) mg/L	40 (20) mg/L
Nit	Manufacturing industry other than those listed above	40 (20) mg/L	20 (10) mg/L
, .	Sewage industry	30 (20) mg/L	20 (10) mg/L
	Night soil treatment tank with holding capacity for more than 200 people	50 (30) mg/L	20 (10) mg/L
	Industrial waste treatment service that treat wastewater containing nitrogen and its compounds	80 (60) mg/L	40 (20) mg/L
	Other	50 (30) mg/L	30 (20) mg/L
	Prepared food manufacturing industry	8 (4) mg/L	3 (1.5) mg/L
	Food manufacturing industry other than those listed above	6 (3) mg/L	2 (1) mg/L
	Iron and steel industry	2 (1) mg/L	1 (0.5) mg/L
ent	Electroplating industry, immersion plating industry, and alumite treatment industry that use surface treatment facility using phosphorus and its compounds		2 (1) mg/L
Phosphorous Content	Metal product manufacturing industry except electroplating industry, immersion plating industry, and alumite treatment industry that use surface treatment facility using phosphorus and its compounds	4 (2) mg/L	1.5 (1) mg/L
sphor	Automobile and automotive accessory manufacturing industry that use surface treatment facility using phosphorus and its compounds		2 (1) mg/L
Phc	Manufacturing industry other than those listed above	4 (2) mg/L	2 (1) mg/L
	Sewage industry	4 (2) mg/L	1 (0.5) mg/L
	Night soil treatment tank with holding capacity for more than 200 people	8 (4) mg/L	2 (1) mg/L
	Industrial waste treatment service that treat wastewater containing phosphorus and its compounds	8 (4) mg/L	2 (1) mg/L
	Other	8 (4) mg/L	4 (2) mg/L

Table C4.T18. Effluent Standards on Nitrogen and Phosphorus contents in the effluent discharged from specified facilities located in Kanagawa Prefecture

Notes:

1. Values shown in brackets are daily average.

2. These standards shall not be applied to the effluent of specified establishments that discharge average daily effluent $< 50 \text{ m}^3$.

- 3. The effluent standards listed in this table is applied to the effluent discharged into Tokyo Bay (the sea area surrounded by the straight line and seashore line connecting between Misaki, Tateyama City and Kenzaki, Miura City) and Waters of Japan area connecting to the bay.
- 4. Applies if specified establishment was established prior to 1 April 1999.
- 5. Applies if specified establishment was established on or after 1 April 1999.

6. As to the effluent discharged from more than one industries defined in "Industry type and other category" located in a specified establishment other than New establishments prior to 1 April 1999 where these industries have different Allowable levels, the largest allowable level shall be applied.

7. As to the effluent discharged from a specified establishment other than new establishments that has changed its category of industry that was effective prior to 1 April 1999 to other category after the date where these old and new industry categories have different allowable levels, the allowable level applicable on 1 April 1999 shall be applied.

- 8. As to the effluent discharged from more than one industries categories defined in "Industry type and other category" located in a new establishment where these industries have different allowable levels (except the new industry category that become effective due to a revision to the law (hereafter referred to as "additional industry category"), the smallest Allowable level shall be applied. However, when a specified establishment originally belongs to only one of "Industry type and other category" other than the additional industry category, the allowable level of the original industry category shall be applied.
- 9. For a business establishment engaging in treating sewage of a factory or other business establishment, the effluent standards specified herein is duly enforced by considering that such business establishment is in the same business field as that of the factory or other business establishment for which it provide sewage treatment service. In this case where there are different allowable levels for the category the factory or other business establishment belong to, Note 6, 7, and 8 shall be applied.

Item	Category	Allowable limit
pН	Water Area 4 ⁵	5.5 - 9.0
BOD	Water Area 1 ⁵ (River)	90 (70) mg/L
	Water Area 1 ⁵ (Lake and reservoir)	50 (40) mg/L
COD	Water Area 2 ⁵ (Lake and reservoir)	85 (65) mg/L
COD	Water Area 3 ⁵ (Lake and reservoir)	120 (90) mg/L
	Water Area 4 ⁵	130 (100) mg/L
	Water Area 1 ⁵ (River)	90 (70) mg/L
TSS	Water Area 1 ⁵ (Lake and reservoir)	90 (70) mg/L
155	Water Area 2 ⁵ (River)	90 (70) mg/L
	Water Area 2 ⁵ (Lake and reservoir)	90 (70) mg/L
at	Water Area 1 ⁵ (River)	8 mg/L
le f act)	Water Area 1 ⁵ (Lake and reservoir)	8 mg/L
etab extr	Water Area 2 ⁵ (River)	8 mg/L
Animal /vegetable fat (N-hexane extract)	Water Area 2 ⁵ (Lake and reservoir)	8 mg/L
	Water Area 3 ⁵ (River)	20 mg/L
nin L-N	Water Area 3 ⁵ (Lake and reservoir)	20 mg/L
A	Water Area 4 ⁵	20 mg/L

Table C4.T19. Effluent Standards for Facilities Located in Hiroshima Prefecture

1. Values shown in brackets are daily average.

2. Applies to installation with discharge effluent \geq 50 m³/day. However, when specified establishments use cyanide or chromium, the standards shall be applied to specified establishments that discharge effluent \geq 30 m³/day.

3. Chromium content must be equal to or < 2 mg/L regardless of discharged effluent volume.

4. For details of water area category, refer to Table C4.T20, "Water Area Categories in Hiroshima Prefecture".

5. "River" means Waters of Japan other than sea areas, lakes or reservoirs.

Water Area 1 Waters of Japan that are not covered by Water Areas 2, 3 or 4 Waters of Japan that are described below and the Waters of Japan connecting the area: - A part of the Eikeiji River that lies upstream of junction where the Nakatsuoka River connects (including a part of the Nakatsuoka River)
- A part of the Eikeiji River that lies upstream of junction where the Nakatsuoka River connects
 A part of the Mitarai River between the Sawarada Bridge and Mitarai Bridge A part of the Kawai River between the Kamiji Bridge and Tonko Bridge A part of the Hayata River between the Ikeda Bridge and Minaga Bridge A part of the Naya River that lies downstream of the junction point where the Jinkou River connects and parts of Ota river between the Ikumorigawa junction point and Oshiba Watergate a between the same junction point and Gion Watergate. A part of the Seno River that lies upstream of the Hiura Bridge. A part of the Noro River that lies upstream of the Oshiba Watergate a between the two River that lies upstream of the Nikyu Reservoir A part of the Noro River that lies upstream of the Utsumi Ohashi Bridge A part of the Mitsuo River that lies upstream of the Gouroku Bridge A part of the Kamo River that lies upstream of the Shinkou Bridge A part of the Kamo River between the junction where the Tamari River connects and the Shinbou Bridge A part of the Nuta River between the junction where the Tino River connects and the Shippou Bridge (include a part of the Irino River and exclude the Mukunashi River and Buttsuji River) A part of the Kurihara River that lies upstream of the Shinkawa Bridge A part of the Hongo River that lies upstream of the Sukuna Bridge A part of the Hongo River that lies upstream of the Sukuna Bridge A part of the Mitaga River that lies upstream of the Shinkawa Bridge A part of the Hongo River that lies upstream of the Sukuna Bridge A part of the Banan River that lies upstream of the Sukuna Bridge A part of the Mitsugi River that lies upstream of the Sukuna Bridge A part of the Kurihara River that lies upstream of the Sukunashi Bridge A part of the Kurihara River that lies upstream of the Sukuna Bridge A part of the Kurihara River that lies upstream of the Sukuna Bridge A part of the Kurihara

Table C4.T20.	Water Area	Categories	in Hiro	shima	Prefecture
$10010 \ 0 \ 1.120.$	11 ator 1 11 ou	Cutogonie		ommu	1 I OI O O CUI O

Category	Description and Coverage
	Waters of Japan that are described below and lakes and reservoirs connecting the area:
	- A part of the Oze River that lies downstream of the Nakaichii Sluice Gate
	- A part of the Eikeiji River that lies downstream of junction where the Nakatsuoka River connects
	- A part of the Mitarai River that lies downstream of the Mitarai Bridge
	- A part of the Kawai River that lies downstream of the Tonko Bridge
	- A part of the Yahata River that lies downstream of the Minaga Bridge
	- A part of the Ota River, Kyuu Ota River, Tenma River, Motoyasu River, Kyobashi River, and
	Enko River that lie downstream of the Gion Watergate and Oshiba Watergate
	- A part of the Seno River that lies downstream of the Hiura Bridge.
	- A part of the Nikou River that lies downstream of the Kamiyamate Bridge
	- A part of the Kurose River that lies downstream of the Nikyu Reservoir
	- A part of the Noro River that lies downstream of the Utsumi Ohashi Bridge.
Water Area 3	- A part of the Takano River that lies downstream of the Gouroku Bridge
water Area 5	- A part of the Mitsuo River that lies downstream of the Shinkou Bridge
	- A part of the Kamo River that lies downstream of the Shinkou Bridge
	- A part of the Nuta River that lies downstream of the Shippou Bridge
	- A part of the Wakuhara River that lies downstream of the Shimizu Bridge.
	- A part of the Kurihara River that lies downstream of the Sakura Bridge
	- A part of the Fujii River that lies downstream of the Shinkawa Bridge
	- A part of the Hongo River that lies downstream of the Suehiro Oohashi Bridge
	- A part of the Sannan River that lies downstream of the Tomodo Bridge
	- A part of the Ashida River that lies downstream of the Kamijima Bridge
	- Water channels where mainly effluent and household wastewater is discharged among the Waters
	of Japan that connect to the rivers listed above in Water Area 3.
	- Rivers that directly flow into other sea area (except rivers in the islands in Hiroshima) and the
	Waters of Japan that connect these rivers.
Water Area 4	Coastal area adjacent to the seashore.

Table C4.T21. Effluent Standards for Facilities Discharging into Kure Water Area ¹¹ of
Hiroshima Prefecture

Item	Category	Allowable limit ³	Allowable limit ⁴
	Iron and steel industry		
	Effluent discharged <10,000 m ³ /day		15 (10) mg/L
COD	Effluent discharged ≥10,000 m³/day	15 (10) mg/L	
	Metal product manufacturing and related industry ⁵		15 (10) mg/L
	Other industry		40 (30) mg/L
	Iron and steel industry		
TSS	Effluent discharged <10,000 m ³ /day		65 (50) mg/L
155	Effluent discharged $\geq 10,000 \text{ m}^3/\text{day}$	65 (50) mg/L	65 (50) mg/L
	Other industry		65 (50) mg/L
p	Iron and steel industry		
solve iron	Effluent discharged <10,000 m ³ /day	3 mg/L	3 mg/L
Dissolved iron	Effluent discharged ≥10,000 m ³ /day	1 mg/L	1 mg/L
D	Metal product manufacturing and related industry ⁵	3 mg/L	3 mg/L
Dissolved manganese	Iron and steel industry		
	Effluent discharged <10,000 m ³ /day	3 mg/L	3 mg/L
	Effluent discharged $\geq 10,000 \text{ m}^3/\text{day}$	1 mg/L	1 mg/L
	Metal product manufacturing industry ⁵	3 mg/L	3 mg/L

1. Values shown in brackets are daily average.

2. Applies to installation with discharge effluent \geq 50 m³/day, unless indicated. However, when specified establishments use cyanide or chromium, the standards shall be applied to specified establishments that discharge effluent \geq 30 m³/day.

- 3. Applies if specified establishment¹² was established prior to 24 March 1973.
- 4. Applies if specified establishment¹² was established on or after 24 March 1973.
- 5. Metal product manufacturing and related industry : Metal product manufacturing industry, general machinery and equipment manufacturing industry, electrical machinery and equipment manufacturing industry, manufacturing industry of machinery and equipment for transportation, and precision machinery and equipment manufacturing industry.
- 6. For effluent discharged from a factory or business establishment that has alkali surface treatment facility or electroplating facility installed (except factories or business establishments that belong to "Iron and steel industry" or "Metal product manufacturing and related industry"), the effluent standards specified for Metal product manufacturing industry and similar industries shall be applied.
- 7. As to the effluent discharged from a factory or business establishment that belongs to more than one industry categories where the relevant laws or this ordinance has defined different allowable effluent standards, the lowest allowable level shall be applied. However, if another industry category had become effective before the stricter effluent standards in Kure Water Area was enforced, the highest effluent standard shall be applied to the effluent of such a factory or business establishment.
- 8. For a business establishment engaging in treating sewage of a factory or other business establishment, the effluent standards specified herein are duly enforced by considering that such a business establishment is in the same business field as that of the factory or other business establishment for which it provides sewage treatment service. In this case, where there is different allowable levels for the category which such a factory or other business establishment belongs to, Note 6 shall be applied.
- 9. If a factory or business establishment discharging effluent into the Kure Water Area which was established before the stricter effluent standards in Kure Water Area became effective (or a factory or business establishment that is considered that it had been established before the standards in Kure Water Area became effective in accordance with Note 10) moves to other location and discharges effluent to the Kure Water Area or installed new specified facility after abolishing the old specified facility without changing the original industry category, such factory or business establishment at the new location is considered that it had been established before the stricter effluent standards in the Kure Water Area became effective only when the effluent standard on COD is applied to.

- 10. When a facility became a specified facility, the factory or business establishment that actually installed the facility (including a facility that became under construction before the date the stricter effluent standards in Kure Water Area became effective but exclude a specified facility established after the date) is considered that the factory or business establishment had been established before the facility became a specified facility.
- 11. Kure Water Area: Coastal and adjacent sea area along the seashore from the point where there is the border between Kure City and Saka-machi, to the other point where there is the border between Nigata-cho, Kure City and Kawajiri-cho, Kure City (except a part of Nikou River that lies upstream of JR Kure Line railroad bridge crossing Nikou River and a part of Kurose River that lies upstream of JR Kure Line railroad bridge crossing Nikou River) and the Waters of Japan connecting to this area.
- 12. Specified establishments: Factory or business establishment with specified facility installed.
- 13. "Specified facility" means those facilities which discharge polluted water or wastewater meeting either of the following conditions:
 - Containing cadmium or other substances which may cause harmful damage to human health.
 - Being of a degree, that may cause damage to the living environment, as COD and other substances as showing the condition of water pollution.

Item	Category	Allowable	Allowable
		limit ³	limit ⁴
	Publishing, printing and related business industry		
	Effluent discharged <500 m ³ /day	50 (40) mg/L	
	Effluent discharged \geq 500 m ³ /day	40 (30) mg/L	
	Effluent discharged <500 m ³ /day		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Iron and steel industry other than iron manufacturing industry		
	1) Establishment that has electroplating facility installed		
	Effluent discharged <500 m ³ /day	20 (15) mg/L	
	Effluent discharged \geq 500 m ³ /day	20 (15) mg/L	
	Effluent discharged <500 m ³ /day		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	2) Other		
	Effluent discharged <500 m ³ /day	20 (15) mg/L	
	Effluent discharged \geq 500 m ³ /day	15 (10) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Non-ferrous metal manufacturing industry		
	Effluent discharged <500 m ³ /day	20 (15) mg/L	
	Effluent discharged \geq 500 m ³ /day	15 (10) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		20 (15) mg/L
COD	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
COD	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Metal product manufacturing industry and machinery equipment		Č – Č
	manufacturing industry (except ordnance manufacturing industry)		
	Effluent discharged <500 m ³ /day	30 (20) mg/L	
	Effluent discharged \geq 500 m ³ /day	20 (15) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		30 (20) mg/L
	Effluent discharged ≥500 m ³ /day and <5,000 m ³ /day		20 (15) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Central kitchen		
	Effluent discharged <500 m ³ /day	85 (65) mg/L	
	Effluent discharged \geq 500 m ³ /day	65 (50) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 5,000 m ³ /day		20 (15) mg/L
	Water supply industry (except sewage industry)		Č – Č
	Effluent discharged <500 m ³ /day	40 (30) mg/L	
	Effluent discharged \geq 500 m ³ /day	30 (20) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$	- · · · · · · · · · · · · · · · · · · ·	20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Sewage industry		
	Effluent discharged <500 m ³ /day	30 (20) mg/L	
	Effluent discharged \geq 500 m ³ /day	30 (20) mg/L	
	Effluent discharged $\leq 500 \text{ m}^3/\text{day}$		30 (20) mg/L

Table C4.T22. Effluent Standards for Facilities Discharging into Seto Inland Sea(1) in Hiroshima
Prefecture

Item	Category	Allowable limit ³	Allowable limit ⁴
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 5,000 m ³ /day		30 (20) mg/L
	Automobile retailing and repair industry		
	Effluent discharged <500 m ³ /day	65 (50) mg/L	
	Effluent discharged \geq 500 m ³ /day	50 (40) mg/L	
	Effluent discharged <500 m ³ /day		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged $\geq 5,000 \text{ m}^3/\text{day}$		15 (10) mg/L
	Restaurant		
	Effluent discharged <500 m ³ /day	130 (100) mg/L	
	Effluent discharged \geq 500 m ³ /day	100 (75) mg/L	
	Effluent discharged <500 m ³ /day		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged $\geq 5,000 \text{ m}^3/\text{day}$		20 (15) mg/L
	Industrial waste treatment service industry		
	Effluent discharged <500 m ³ /day	50 (40) mg/L	
	Effluent discharged \geq 500 m ³ /day	40 (30) mg/L	
	Effluent discharged <500 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		20 (15) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Other industry (those that have alkali surface treatment or electroplating facility installed)		
	Effluent discharged <500 m ³ /day	30 (20) mg/L	
	Effluent discharged $>500 \text{ m}^3/\text{day}$	20 (15) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L
	Other industry		
	1) Establishment that has car washing facility installed		
	Effluent discharged <500 m ³ /day	65 (50) mg/L	
	Effluent discharged \geq 500 m ³ /day	65 (50) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged $\geq 5,000 \text{ m}^3/\text{day}$		15 (10) mg/L
	2) Other		· · · · ·
	Effluent discharged <500 m ³ /day	130 (100) mg/L	
	Effluent discharged $\geq 500 \text{ m}^3/\text{day}$	130 (100) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged ≥5,000 m ³ /day		15 (10) mg/L

1. Values shown in brackets are daily average.

2. Applies to installation with discharge effluent $\geq 50 \text{ m}^3/\text{day}$, unless indicated.

3. Applies if facility was established prior to 27 March 1974.

4. Applies if facility was established on or after 27 March 1974.

5. If a factory or business establishment discharging effluent into the Seto Water Area which was established before the stricter effluent standards in Seto Water Area became effective (or a factory or business establishment that is considered that it had been established before the standards in Seto Water Area became effective in accordance with Note 6) moves to other location and discharges effluent to the Seto Water Area or installed new specified facility after abolishing the old specified facility without changing the original industry category, such factory or business establishment at the new location is considered that it had been established before the stricter effluent standards in the Seto Water Area became effective.

- 6. When a facility became a specified facility, the factory or business establishment that actually installed the facility (including a facility that became under construction before the date the stricter effluent standards in Kure Water Area became effective but exclude a specified facility established after the date) is considered that the factory or business establishment had been established before the facility became a specified facility.
- 7. As to the effluent discharged from a factory or business establishment that belongs to more than one industry categories where there are different allowable effluent standards, the lowest allowable limit shall be applied.
- 8. For a business establishment engaging in treating sewage of a factory or other business establishment, the effluent standards specified herein is duly enforced by considering that such business establishment is in the same business field as that of the factory or other business establishment for which it provide sewage treatment service. In this case, where there are different allowable limits for the category which such a factory or other business establishment belong to, Note 6 shall be applied.
- 9. Specified establishments: Factory or business establishment with specified facility installed.
- 10. "Specified facility" means those facilities which discharge polluted water or wastewater meeting either of the following conditions:
 - Containing cadmium or other substances which may cause harmful damage to human health.
 - Being of a degree, that may cause damage to the living environment, as COD and other substances as showing the condition of water pollution.

Item	Category	Allowable limit ³	Allowable limit ⁴
	Waste disposal industry		
	Effluent discharged <500 m ³ /day	65 (50) mg/L	
	Effluent discharged $>500 \text{ m}^3/\text{day}$	65 (50) mg/L	
	Effluent discharged $\leq 500 \text{ m}^3/\text{day}$		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 5,000 m ³ /day		20 (15) mg/L
	Hotel and other lodging industry		
	Effluent discharged <500 m ³ /day	85 (65) mg/L	
	Effluent discharged \geq 500 m ³ /day	65 (50) mg/L	
	Effluent discharged <500 m ³ /day		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 5,000 m ³ /day		20 (15) mg/L
	Medical service industry		
	Effluent discharged <500 m ³ /day	85 (65) mg/L	
	Effluent discharged \geq 500 m ³ /day	65 (50) mg/L	
	Effluent discharged $\leq 500 \text{ m}^3/\text{day}$		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 5,000 m ³ /day		20 (15) mg/L
	Research institution		
	Effluent discharged <500 m ³ /day	85 (65) mg/L	
	Effluent discharged \geq 500 m ³ /day	65 (50) mg/L	
	Effluent discharged $\leq 500 \text{ m}^3/\text{day}$		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
COD	Effluent discharged \geq 5,000 m ³ /day		20 (15) mg/L
COD	Night soil treatment plant (for > 500 people)		
	1) Established prior to 19 April 1975		
	Effluent discharged <500 m ³ /day	120 (90) mg/L	
	Effluent discharged \geq 500 m ³ /day	120 (90) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		40 (30) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged \geq 5,000 m ³ /day		20 (15) mg/L
	2) Other		~
	Effluent discharged <500 m ³ /day	50 (40) mg/L	
	Effluent discharged \geq 500 m ³ /day	50 (40) mg/L	
	Effluent discharged $\leq 500 \text{ m}^3/\text{day}$		40 (30) mg/L
	Effluent discharged ≥500 m ³ /day and <5,000 m ³ /day		30 (20) mg/L
	Effluent discharged ≥5,000 m ³ /day		20 (15) mg/L
	Night soil treatment plant (for ≥ 201 and ≤ 500 people)		
	1) Household night soil treatment plant and those established prior		
	to 1 June 1981		
	Effluent discharged <500 m ³ /day	120 (90) mg/L	
	Effluent discharged \geq 500 m ³ /day	120 (90) mg/L	
	Effluent discharged $<500 \text{ m}^3/\text{day}$		50 (40) mg/L
	Effluent discharged ≥500 m ³ /day and <5,000 m ³ /day		40 (30) mg/L
	Effluent discharged ≥5,000 m ³ /day		30 (20) mg/L
	2) Other		
	Effluent discharged <500 m ³ /day	80 (60) mg/L	
	Effluent discharged \geq 500 m ³ /day	80 (60) mg/L	

Table C4.T23. Effluent Standards for Facilities Discharging into Seto Inland Sea(2) in Hiroshima
Prefecture

Item	Category	Allowable	Allowable
		limit ³	limit ⁴
	Effluent discharged <500 m ³ /day		50 (40) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		40 (30) mg/L
	Effluent discharged \geq 5,000 m ³ /day		30 (20) mg/L
	Night soil treatment industry (except those involving night soil treatment plants)		
	Effluent discharged <500 m ³ /day	65 (50) mg/L	
	Effluent discharged \geq 500 m ³ /day	65 (50) mg/L	
	Effluent discharged <500 m ³ /day		20 (15) mg/L
	Effluent discharged \geq 500 m ³ /day and <5,000 m ³ /day		15 (10) mg/L
	Effluent discharged \geq 5,000 m ³ /day		15 (10) mg/L

- 1. Values shown in brackets are daily average.
- 2. Applies to installation with discharge effluent \geq 50 m³/day, unless indicated.
- 3. Applies if facility was established prior to 1 April 1983.
- 4. Applies if facility was established on or after 1 April 1983.
- 5. If a factory or business establishment discharging effluent into the Seto Water Area which was established before the stricter effluent standards in Seto Water Area became effective (or a factory or business establishment that is considered that it had been established before the standards in Seto Water Area became effective in accordance with Note 6) moves to other location and discharges effluent to the Seto Water Area or installed new specified facility after abolishing the old specified facility without changing the original industry category, such factory or business establishment at the new location is considered that it had been established before the stricter effluent standards in the Seto Water Area became effective.
- 6. When a facility became a specified facility, the factory or business establishment that actually installed the facility (including a facility that became under construction before the date the stricter effluent standards in Kure Water Area became effective but exclude a specified facility established after the date) is considered that the factory or business establishment had been established before the facility became a specified facility.
- 7. As to the effluent discharged from a factory or business establishment that belongs to more than one industry categories where there are different allowable effluent standards, the lowest allowable limit shall be applied.
- 8. For a business establishment engaging in treating sewage of a factory or other business establishment, the effluent standards specified herein is duly enforced by considering that such business establishment is in the same business field as that of the factory or other business establishment for which it provide sewage treatment service. In this case, where there are different allowable limits for the category which such a factory or other business establishment belong to, Note 6 shall be applied.
- 9. Specified establishments: Factory or business establishment with specified facility installed.
- 10. "Specified facility" means those facilities which discharge polluted water or wastewater meeting either of the following conditions:
 - Containing cadmium or other substances which may cause harmful damage to human health.
 - Being of a degree, that may cause damage to the living environment, as COD and other substances as showing the condition of water pollution.

	Night soil treatment facility Terminal sewerage treatment facility Primary quality treatment ⁶ Intermediate quality treatment ⁷	limit ³ 40 (30) mg/L 150 (120) mg/L	limit ⁴ 40 (30) mg/L
	2) Terminal sewerage treatment facility Primary quality treatment ⁶		40 (30) Illg/L
	Primary quality treatment ⁶	150 (100) /1	
		$150(170) m\sigma/1$	150 (120) mg/L
3		80 (60) mg/L	80 (60) mg/L
3	Superior quality treatment ⁸	25 (20) mg/L	25 (20) mg/L
	3) Other facility ¹²	25 (20) mg/L	25 (20) mg/L
BOD	Effluent discharged <500 m ³ /day	130 (100) mg/L	
	Effluent discharged \geq 500 m ³ /day	55 (40) mg/L	
	Effluent discharged <100 m ³ /day		120 (90) mg/L
	Effluent discharged $\geq 100 \text{ m}^3/\text{day}$ and $\leq 1,000 \text{ m}^3/\text{day}$		80 (60) mg/L
	Effluent discharged \geq 1,000 m ³ /day and <10,000 m ³ /day		50 (40) mg/L
	Effluent discharged \geq 10,000 m ³ /day and <100,000 m ³ /day		25 (20) mg/L
	Effluent discharged $\geq 10,000 \text{ m}^3/\text{day}$		15 (10) mg/L
1	1) Night soil treatment facility	40 (30) mg/L	40 (30) mg/L
	2) Terminal sewerage treatment facility	40 (50) mg/L	40 (50) mg/L
	Primary quality treatment ⁶	150 (120) mg/L	150 (120) mg/L
	Intermediate quality treatment ⁷	80 (60) mg/L	80 (60) mg/L
	Superior quality treatment ⁸	25 (20) mg/L	25 (20) mg/L
:	3) Other facility ¹²	23 (20) IIIg/L	23 (20) IIIg/L
COD	Effluent discharged <500 m ³ /day	130 (100) mg/L	
	Effluent discharged \geq 500 m ³ /day	55 (40) mg/L	
	Effluent discharged <100 m ³ /day	55 (40) IIIg/L	120 (90) mg/L
	Effluent discharged $\geq 100 \text{ m}^3/\text{day}$ and $\leq 1,000 \text{ m}^3/\text{day}$		80 (60) mg/L
	Effluent discharged \geq 1,000 m ³ /day and <1,000 m ³ /day		50 (40) mg/L
	Effluent discharged \geq 1,000 m ³ /day and <10,000 m ³ /day		25 (20) mg/L
	Effluent discharged $\geq 10,000 \text{ m}/\text{day}$ and $< 100,000 \text{ m}/\text{day}$		15 (10) mg/L
1	1) Terminal sewerage treatment facility		15 (10) IIIg/L
	Primary quality treatment ⁶	190 (150) mg/L	190 (150) mg/L
	Intermediate quality treatment ⁷	150 (120) mg/L	150 (120) mg/L
	Superior quality treatment ⁸	90 (70) mg/L	90 (70) mg/L
	2) Other facility ¹²	90 (70) mg/L	90 (70) mg/L
	Effluent discharged <500 m ³ /day	150 (120) mg/L	
TSS –	Effluent discharged $\geq 500 \text{ m}^3/\text{day}$	90 (70) mg/L	
	Effluent discharged <100 m ³ /day) (() IIIg/ E	90 (70) mg/L
	Effluent discharged $\geq 100 \text{ m}^3/\text{day}$ and $\leq 1,000 \text{ m}^3/\text{day}$		90 (70) mg/L
	Effluent discharged \geq 1,000 m ³ /day and <10,000 m ³ /day		40 (30) mg/L
	Effluent discharged \geq 10,000 m ³ /day and <100,000 m ³ /day		40 (30) mg/L
	Effluent discharged $\geq 100,000 \text{ m}^3/\text{day}$		20 (15) mg/L
_ 1	1) Waste oil treatment facility	2 mg/L	20 (10) mg/E
	2) Other facility ¹²	2	
Mineral oil A-hexane extrac	Effluent discharged $\geq 500 \text{ m}^3/\text{day}$	3 mg/L	
ner:	Effluent discharged \geq 1,000 m ³ /day and <10,000 m ³ /day	5 mg/ L	2 mg/L
Mir -hex	Effluent discharged \geq 1,000 m ³ /day and <10,000 m ³ /day	1	2 mg/L 2 mg/L
ĽŻ –	Effluent discharged >100,000 m ³ /day	1	1 mg/L

Table C4.T24.	Effluent Standards for Facilities Located in Yamaguchi Prefecture
---------------	---

Item	Category	Allowable limit ³	Allowable limit ⁴
Vegetable oil and fat (N-hexane extract)	1) Other facility ¹²		
	Effluent discharged <500 m ³ /day	10 mg/L	
an xtra	Effluent discharged \geq 500 m ³ /day	5 mg/L	
oil e e:	Effluent discharged <100 m ³ /day		15 mg/L
ole	Effluent discharged $\geq 100 \text{ m}^3/\text{day}$ and $< 1,000 \text{ m}^3/\text{day}$		15 mg/L
etal	Effluent discharged \geq 1,000 m ³ /day and $<$ 10,000 m ³ /day		10 mg/L
L'ege	Effluent discharged ≥10,000 m ³ /day and <100,000 m ³ /day		10 mg/L
> _	Effluent discharged $\geq 100,000 \text{ m}^3/\text{day}$		5 mg/L
	1) Other facility ¹²		
	Effluent discharged <500 m ³ /day	1 mg/L	
s	Effluent discharged \geq 500 m ³ /day	1 mg/L	
Phenols	Effluent discharged <100 m ³ /day		1 mg/L
hei	Effluent discharged $\geq 100 \text{ m}^3/\text{day}$ and $< 1,000 \text{ m}^3/\text{day}$		1 mg/L
Ц	Effluent discharged \geq 1,000 m ³ /day and $<$ 10,000 m ³ /day		1 mg/L
	Effluent discharged ≥10,000 m ³ /day and <100,000 m ³ /day		1 mg/L
	Effluent discharged $\geq 100,000 \text{ m}^3/\text{day}$		1 mg/L
	1) Other facility ¹²		
ц	Effluent discharged <500 m ³ /day	10 mg/L	
iro	Effluent discharged \geq 500 m ³ /day	10 mg/L	
Dissolved iron	Effluent discharged <100 m ³ /day		3 mg/L
olv	Effluent discharged ≥100 m ³ /day and <1,000 m ³ /day		3 mg/L
iss	Effluent discharged \geq 1,000 m ³ /day and $<$ 10,000 m ³ /day		3 mg/L
Д	Effluent discharged ≥10,000 m ³ /day and <100,000 m ³ /day		3 mg/L
	Effluent discharged $\geq 100,000 \text{ m}^3/\text{day}$		3 mg/L
	1) Other facility ¹²		
	Effluent discharged <500 m ³ /day	10 mg/L	
ed	Effluent discharged <a>2500 m³/day	10 mg/L	
Dissolved manganese	Effluent discharged <100 m ³ /day		3 mg/L
isse	Effluent discharged ≥100 m ³ /day and <1,000 m ³ /day		3 mg/L
D D	Effluent discharged ≥1,000 m³/day and <10,000 m³/day		3 mg/L
	Effluent discharged ≥10,000 m ³ /day and <100,000 m ³ /day		3 mg/L
	Effluent discharged ≥100,000 m³/day		3 mg/L
Chromium content	1) Other facility ¹²		
	Effluent discharged <500 m ³ /day	2 mg/L	
	Effluent discharged <a>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2 mg/L	
	Effluent discharged <100 m ³ /day		2 mg/L
	Effluent discharged ≥100 m ³ /day and <1,000 m ³ /day		2 mg/L
ton	Effluent discharged ≥1,000 m ³ /day and <10,000 m ³ /day		2 mg/L
Chr	Effluent discharged ≥10,000 m ³ /day and <100,000 m ³ /day		2 mg/L
	Effluent discharged <a>2100,000 m³/day		2 mg/L

- 1. Values shown in brackets are daily average.
- 2. Applies to installation with discharge effluent \geq 50 m³/day, unless indicated.
- 3. Applies if facility was established prior to 24 June 1972.
- 4. Applies if facility was established on or after 24 June 1972.
- 5. When there are different allowable limits defined for each of mineral oil contents, animal /vegetable oil and fat contents, the allowable limit for the largest pollutant discharge load of each parameter shall be applied.
- 6. Primary quality treatment: sewerage treatment using precipitation method.
- 7. Intermediate quality treatment: sewerage treatment using high-rate trickling filter method, modified aeration method or methods with equivalent quality.

- 8. Superior quality treatment: sewerage treatment using activated sludge method, standard trickling filter method, or methods with equivalent quality.
- 9. When a specified establishment within a sewerage service area discharges effluent into the Waters of Japan, the stricter effluent standard applicable to a terminal sewage treatment facility shall be applied to the establishment (if the establishment has multiple terminal sewage treatments installed, the most strict effluent standard among all stricter effluent standards applied to the all terminal sewage treatments shall be applied).
- 10. Specified establishments: Factory or business establishment with specified facility installed
- 11. "Specified facility" means those facilities which discharge polluted water or wastewater meeting either of the following conditions:
 - Containing cadmium or other substances which may cause harmful damage to human health.
 - Being of a degree, that may cause damage to the living environment, as COD and other substances as showing the condition of water pollution.
- 12. Other facility: gas supply facility, water supply facility, acid or alkali surface treatment facility, electroplating facility, central kitchen, restaurant, waste oil treatment facility (established on or after 24 June 1972).

	-		
Item	Category	Allowable	Allowable
		limit ³	limit ⁴
	Within a sewerage service area		
	Effluent discharged $\geq 2 \text{ m}^3/\text{day}$ and $< 10 \text{ m}^3/\text{day}$	30 (20) mg/L	
	Effluent discharged $\geq 10 \text{ m}^3/\text{day}$	30 (20) mg/L	
BOD	Effluent discharged $\geq 2 \text{ m}^3/\text{day}$		30 (20) mg/L
вор	Within an area with no sewerage service		
	Effluent discharged $\geq 10 \text{ m}^3/\text{day}$ and $\leq 20 \text{ m}^3/\text{day}$	80 (60) mg/L	80 (60) mg/L
	Effluent discharged $\geq 20 \text{ m}^3/\text{day}$ and $< 50 \text{ m}^3/\text{day}$	80 (60) mg/L	80 (60) mg/L
	Effluent discharged \geq 50 m ³ /day	30 (20) mg/L	30 (20) mg/L
	Within a sewerage service area		
	Effluent discharged $\geq 2 \text{ m}^3/\text{day}$ and $< 10 \text{ m}^3/\text{day}$	30 (20) mg/L	
	Effluent discharged $\geq 10 \text{ m}^3/\text{day}$	30 (20) mg/L	
COD	Effluent discharged $\geq 2 \text{ m}^3/\text{day}$		30 (20) mg/L
COD	Within an area with no sewerage service		
	Effluent discharged $\geq 10 \text{ m}^3/\text{day}$ and $\leq 20 \text{ m}^3/\text{day}$	80 (60) mg/L	80 (60) mg/L
	Effluent discharged $\geq 20 \text{ m}^3/\text{day}$ and $< 50 \text{ m}^3/\text{day}$	80 (60) mg/L	80 (60) mg/L
	Effluent discharged \geq 50 m ³ /day	30 (20) mg/L	30 (20) mg/L
	Within a sewerage service area		
	Effluent discharged $\geq 2 \text{ m}^3/\text{day}$ and $< 10 \text{ m}^3/\text{day}$	50 (40) mg/L	
TSS	Effluent discharged $\geq 10 \text{ m}^3/\text{day}$	50 (40) mg/L	
	Effluent discharged $\geq 2 \text{ m}^3/\text{day}$		50 (40) mg/L
	Within an area with no sewerage service		
	Effluent discharged $\geq 10 \text{ m}^3/\text{day}$ and $\leq 20 \text{ m}^3/\text{day}$	100 (80) mg/L	100 (80) mg/L
	Effluent discharged $\geq 20 \text{ m}^3/\text{day}$ and $< 50 \text{ m}^3/\text{day}$	100 (80) mg/L	100 (80) mg/L
	Effluent discharged $\geq 50 \text{ m}^3/\text{day}$	50 (40) mg/L	50 (40) mg/L

Table C4 T25	Effluent Standards for Facilities Located in Nagasaki Prefecture ⁵
1a010C+.123.	Efficient Standards for Facilities Educated in Nagasaki Ficieltate

1. Values shown in brackets are daily average.

2. Applies to installation with discharge effluent \geq 50 m³/day, unless indicated.

3. Applies if specified facility⁶ was established prior to 1 January 1988.

4. Applies if specified facility⁶ was established on or after 1 January 1988.

5. Applicable area: Oomura Bay (the sea area surrounded by the 270 degrees C line and the seashore line between the sea surface underneath Saikai Bridge and the point located 90 m southwest to the left bank of Kakezaki River estuary (at 33° 6' 35" north in latitude of 129° 47' 40" east in longitude where Sasebo's former Sakioka tidal level observation site)) and all rivers and the water area that flow into the bay.

6. "Specified facility" means those facilities which discharge polluted water or wastewater meeting either of the following conditions:

• Containing cadmium or other substances which may cause harmful damage to human health.

• Being of a degree, that may cause damage to the living environment, as COD and other substances as showing the condition of water pollution.

Table C4.T26. Effluent Standards for Facilities Discharging into Nakagusuku Bay, Yokatsu
Peninsula and Kin Bay Sea Areas in Okinawa Prefecture

Item	Category	Allowable limit
	All which have a specified facility ³ within a local sewerage service area	30 (20) mg/L
	Which have a specified facility within an area with no local sewerage service	
	1) Domestic wastewater treatment facility (for >500 people, and effluent ≥ 50	30 (20) mg/L
BOD	m ³ /day)	
	2) Specified facility ³ other than listed above	
	Effluent discharged $\geq 20 \text{ m}^3/\text{day}$ and $< 50 \text{ m}^3/\text{day}$	160 (120) mg/L
	Effluent discharged \geq 50 m ³ /day and $<$ 200 m ³ /day	70 (50) mg/L
	Effluent discharged $\geq 200 \text{ m}^3/\text{day}$	30 (20) mg/L
	All which have a specified facility ³ within a local sewerage service area	30 (20) mg/L
	Which have a specified facility within an area with no local sewerage service	
	1) Domestic wastewater treatment facility (for >500 people, and effluent ≥ 50	30 (20) mg/L
COD	m ³ /day)	
COD	2) Specified facility ³ other than listed above	
	Effluent discharged $\geq 20 \text{ m}^3/\text{day}$ and $< 50 \text{ m}^3/\text{day}$	160 (120) mg/L
	Effluent discharged \geq 50 m ³ /day and $<$ 200 m ³ /day	70 (50) mg/L
	Effluent discharged $\geq 200 \text{ m}^3/\text{day}$	30 (20) mg/L
	All which have a specified facility ³ within a local sewerage service area	90(70) mg/L
	Which have a specified facility within an area with no local sewerage service	
	1) Domestic wastewater treatment facility (for >500 people, and effluent ≥ 50	90 (70) mg/L
TSS	m ³ /day)	
155	2) Specified facility ³ other than listed above	
	Effluent discharged $\geq 20 \text{ m}^3/\text{day}$ and $< 50 \text{ m}^3/\text{day}$	200 (150) mg/L
	Effluent discharged \geq 50 m ³ /day and <200 m ³ /day	130 (100) mg/L
	Effluent discharged <u>>200 m³/day</u>	90 (70) mg/L

1. Values shown in brackets are daily average.

2. Applies to all discharge effluent volume, unless indicated.

3. Specified facility: gas supply facility, water supply facility, acid or alkali surface treatment facility, electroplating facility, central kitchen, restaurant, laundry facility, photo printing facility, hospital with 300 or more beds, waste oil treatment facility, business establishment for scientific technology research, study or test (except those related to humanities only), waste treatment facility, night soil treatment facility, domestic wastewater treatment facility (for >500 people), automated car washing facility.

4. The effluent standards for BOD shall be applied to effluents discharged into public water area other than sea and lake areas, and the effluent standards for COD shall be applied to effluents discharged into sea and lake areas.

Table C4.T27.	Effluent Standards for Facilities Discharging into Hija River and Tengan River
Water Areas in	Okinawa Prefecture

Item	Category	Allowable limit
	All which have a specified facility ³ within a local sewerage service area	6.5-8.5
pН	Which have a specified facility ³ within an area with no local sewerage service (effluent	6.5-8.5
	$\geq 20 \text{ m}^3/\text{day})$	
	All which have a specified facility ³ within a sewerage service area	30 (20) mg/L
BOD	Which have an other specified facility ³ within an area with no sewerage service area	30 (20) mg/L
	(effluent $\geq 20 \text{ m}^3/\text{day}$)	
	All which have a specified facility ³ within a local sewerage service area	90 (70) mg/L
TSS	Which have an other specified facility ³ within an area with no local sewerage service	90 (70) mg/L
	area (effluent $\geq 20 \text{ m}^3/\text{day}$)	

1. Values shown in brackets are daily average.

2. Applies to all discharge effluent volume, unless indicated.

3. Specified facility: gas supply facility, water supply facility, acid or alkali surface treatment facility, electroplating facility, central kitchen, restaurant, laundry facility, photo printing facility, hospital with 300 or more beds, waste oil treatment facility, business establishment for scientific technology research, study or test (except those related to humanities only), waste treatment facility, night soil treatment facility, domestic wastewater treatment facility (for >500 people), automated car washing facility.

Table C4.T28. Effluent Standards for Facilities Discharging into Taiho River Water Areas in Okinawa Prefecture

Item	Category	Allowable limit
pН	All specified facilities ³	6.5-8.5
BOD	All specified facilities ³	30 (20) mg/L
TSS	All specified facilities ³	90 (70) mg/L

Notes:

1. Values shown in brackets are daily average.

- 2. Applies to all discharge effluent volume, unless indicated.
- 3. Specified facility: gas supply facility, water supply facility, acid or alkali surface treatment facility, electroplating facility, central kitchen, restaurant, laundry facility, photo printing facility, hospital with 300 or more beds, waste oil treatment facility, business establishment for scientific technology research, study or test (except those related to humanities only), waste treatment facility, night soil treatment facility, domestic wastewater treatment facility (for >500 people), automated car washing facility.

Table C4.T29. Effluent Standards for Facilities Discharging into Naha Port Water Areas in Okinawa Prefecture

Item	Category	Allowable limit
pН	All specified facilities ³	6.5-8.5
BOD	All specified facilities ³	30 (20) mg/L
COD	All specified facilities ³	30 (20) mg/L
TSS	All specified facilities ³	90 (70) mg/L

Notes:

1. Values shown in brackets are daily average.

2. Applies to all discharge effluent volume, unless indicated.

3. Specified facility: automated car washing facility, gas supply facility, water supply facility, acid or alkali surface treatment facility, electroplating facility, central kitchen, restaurant, laundry facility, photo printing facility, hospital with 300 or more beds, waste oil treatment facility, business establishment for scientific technology research, study or test (except those related to humanities only), waste treatment facility, night soil treatment facility, domestic wastewater treatment facility (for >500 people).

4. The effluent standards for BOD shall be applied to effluents discharged into public water area other than sea and lake areas, and the effluent standards for COD shall be applied to effluents discharged into sea and lake areas.

Water Area	Area Description
Category	
Nakagusuku Bay Area	The sea area surrounded by a line joining Cape Chinen with the south extreme of Kudaka Island, Kudaka Island shore, and a line joining the north extreme of Kudaka Island with the south extreme of the Tsuken Island, Tsuken Island shore and a line joining the north extreme of Tsuken Island with the Cape Katsuren and Okinawa Island land shore, and public waters that flow into the sea.
Yokatsu Peninsula Area	The sea areas surrounded by a line sequentially connecting the following points: Cape Katsuren at the point 26°16' north latitude, 128°1' east longitude; at the point26°25' north latitude and 128°1' east longitude; at the point 26°25' north latitude and 128° east longitude; at the point 26°22' north latitude and 127°56' east longitude; at the point in the road where Uruma City's Yonashiro Yakena and Henza Island (hereinafter referred to as "Sea Road") connect, the point at 127°56' east longitude; and the sea area surrounding where the Sea Road meets the coast; and public waters that flow into the sea (except for Tengan river).
Kin Bay Area	Kin Bay (the sea area surrounded by a line on Cape Kin sequentially connecting the following points around the coast and sea road: where the Sea Road crosses 127°56′ east longitude; the point at 26°22′ north latitude and 127°56′ east longitude; at 26°25′ north latitude and 128° longitude) and public waters that flow into the sea (except Tengan River).
Hija River Area	The part of the Hija River that lies upstream of the diversion weir placed downstream of Hija Bridge, and public bodies of water that connect to the river.
Tengan River Area	Tengan River and public bodies of water that connect to the river.
Taiho River Area	Taiho River and public bodies of water that connect to the river.
Naha Port Sea Area	The sea areas surrounded by a drawn line from Ominehana (at 26°11'40" north in latitude and 127°38'18" east in longitude) extended 3,500m at a 358° angle; and a drawn line from the same point to the point extended 4,850m at a 30° angle; and the drawn line from same point to the point extended 2,400m at a 135° angle; and the drawn line from same point to the point extended 2,400m at a 135° angle; and the drawn line from same point to the point extended 2,400m at a 135° angle; and the drawn line from same point to the point extended 2,400m at a 135° angle; and the drawn line from same point to the point extended 2,400m at a 135° angle; and the drawn line from same point to the point extended 2,400m at a 135° angle; and the drawn line from same point to the point extended 4,850m at a 30° angle crossing to the land shore; and public waters that flow into the sea (except Kokuba River).

Table C4.T30.	Water Area Categor	ry of Okinawa Prefecture
---------------	--------------------	--------------------------

Item	Water Area ²	Facility	Allowable Limit	
	Headwater Area	Factories ³	0.003mg/L	
Cadmium and Its	Headwater Area	Designated Work Places ⁴	0.03mg/L	
compounds	General water area A, B, and	Factories and Designated	0.03mg/L	
	Island and surrounding sea area	Work Places	0.05mg/L	
	Headwater Area	Factories ³	ND	
Cuanida	Headwater Area	Designated Work Places ⁴	1mg/L	
Cyanide	General water area A, B, and	Factories and Designated	1 m ~/I	
	Island and surrounding sea area	Work Places	1mg/L	
Oneenie	Headwater Area	Factories ³	ND	
Organic	Headwater Area	Designated Work Places ⁴	1mg/L	
phosphorus compound	General water area A, B, and	Factories and Designated	1 m ~/I	
compound	Island and surrounding sea area	Work Places	1mg/L	
	Headwater Area	Factories ³	0.01 mg/L	
Lead and its	Headwater Area	Designated Work Places ⁴	0.1mg/L	
compounds	General water area A, B, and	Factories and Designated		
	Island and surrounding sea area	Work Places	0.1mg/L	
TT 1 4	Headwater Area	Factories ³	0.05mg/L	
Hexavalent	Headwater Area	Designated Work Places ⁴	0.5mg/L	
chromium	General water area A, B, and	Factories and Designated	0.5 /1	
compound	Island and surrounding sea area	Work Places	0.5mg/L	
	Headwater Area	Factories ³	0.01 mg/L	
Arsenic and its	Headwater Area	Designated Work Places ⁴	0.1mg/L	
compounds	General water area A, B, and	Factories and Designated		
1	Island and surrounding sea area	Work Places	0.1mg/L	
Mercury, alkyl	Headwater Area	Factories ³	0.0005 mg/L	
mercury, and	Headwater Area	Designated Work Places ⁴	0.005mg/L	
mercury	General water area A, B, and	Factories and Designated		
compounds	Island and surrounding sea area	Work Places	0.005mg/L	
*	Headwater Area	Factories ³	ND	
Alkyl mercury	Headwater Area	Designated Work Places ⁴	ND	
compound	General water area A, B, and	Factories and Designated	ND	
1	Island and surrounding sea area	Work Places	ND	
	Headwater Area	Factories ³	ND	
DOD	Headwater Area	Designated Work Places ⁴	0.003mg/L	
PCB	General water area A, B, and	Factories and Designated		
	Island and surrounding sea area	Work Places	0.003mg/L	
	Headwater Area	Factories ³	0.03mg/L	
T. 11 (1 1	Headwater Area	Designated Work Places ⁴	0.3mg/L	
Trichloroethylene	General water area A, B, and	Factories and Designated		
	Island and surrounding sea area	Work Places	0.3mg/L	
	Headwater Area	Factories ³	0.01mg/L	
T 11 11	Headwater Area	Designated Work Places ⁴	0.1mg/L	
Tetrachloroethylene	General water area A, B, and	Factories and Designated		
	Island and surrounding sea area	Work Places	0.1mg/L	
	Headwater Area	Factories ³	0.02mg/L	
D'11 -1	Headwater Area	Designated Work Places ⁴	0.2mg/L	
Dichloromethane	General water area A, B, and	Factories and Designated	0.2mg/L	
	Island and surrounding sea area	Work Places		
Carbon	Headwater Area	Factories ³	0.002mg/L	
tetrachloride	Headwater Area	Designated Work Places ⁴	0.02mg/L	

Table C4.T31. Effluent Standards for Facilities Located in Tokyo Prefecture (Harmful Substances)

Item	Water Area ²	Facility	Allowable Limit
	General water area A, B and	Factories and Designated	0.02mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	0.004mg/L
1,2-Dichloroethane	Headwater Area	Designated Work Places ⁴	0.04mg/L
1,2 Diemoroeulane	General water area A, B and	Factories and Designated	0.04mg/L
	Island and surrounding sea area	Work Places	-
	Headwater Area	Factories ³	0.1mg/L
1,1-	Headwater Area	Designated Work Places ⁴	1mg/L
Dichloroethylene	General water area A, B and	Factories and Designated	1mg/L
	Island and surrounding sea area	Work Places	_
	Headwater Area	Factories ³	0.04mg/L
cis-1,2-	Headwater Area	Designated Work Places ⁴	0.4mg/L
Dichloroethylene	General water area A, B and	Factories and Designated	0.4mg/L
	Island and surrounding sea area	Work Places	-
	Headwater Area	Factories ³	1mg/L
1,1,1-	Headwater Area	Designated Work Places ⁴	3mg/L
Trichloroethane	General water area A, B and	Factories and Designated	3mg/L
	Island and surrounding sea area	Work Places	_
	Headwater Area	Factories ³	0.006mg/L
1,1,2-	Headwater Area	Designated Work Places ⁴	0.06mg/L
Trichloroethane	General water area A, B and	Factories and Designated	0.06mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	0.002mg/L
1,3-	Headwater Area	Designated Work Places ⁴	0.02mg/L
Dichloropropene	General water area A, B and	Factories and Designated	0.02mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	0.006mg/L
Thiuram	Headwater Area	Designated Work Places ⁴	0.06mg/L
1 marann	General water area A, B and	Factories and Designated	0.06mg/L
	Island and surrounding sea area	Work Places	-
	Headwater Area	Factories ³	0.003mg/L
Simazine	Headwater Area	Designated Work Places ⁴	0.03mg/L
Simulatio	General water area A, B and	Factories and Designated	0.03mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	0.02mg/L
Thiobencarb	Headwater Area	Designated Work Places ⁴	0.2mg/L
	General water area A, B and	Factories and Designated	0.2mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	0.01mg/L
Benzene	Headwater Area	Designated Work Places ⁴	0.1mg/L
	General water area A, B and	Factories and Designated	0.1 mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	0.01mg/L
Selenium and its	Headwater Area	Designated Work Places ⁴	0.1mg/L
compounds	General water area A, B and	Factories and Designated	0.1mg/L
	Island and surrounding sea area	Work Places	
	Headwater Area	Factories ³	1 mg/L
			10 mg/L
Boron and its	Headwater Area	Designated Work Places ⁴	(Areas other than sea area)
compounds			230 mg/L(Sea area)
compounds	Conorol water area A. D 1	Easteries and Desired 1	10 mg/L
	General water area A, B and	Factories and Designated	(Areas other than sea area)
	Island and surrounding sea area	Work Places	230 mg/L(Sea area)

Item	Water Area ²	Facility	Allowable Limit
	Headwater Area	Factories ³	0.8 mg/L
			8 mg/L
	Headwater Area	Designated Work Places ⁴	(Areas other than sea area)
Fluorine and its			15 mg/L(Sea area)
compounds	General water area A, B, and	Factories and Designated	8 mg/L (Areas other than sea area)
	Island and surrounding sea area	Work Places	15 mg/L(Sea area)
	Headwater Area	Factories ³	0.05 mg/L
1 1 diavana	Headwater Area	Designated Work Places ⁴	0.5 mg/L
1,4-dioxane	General water area A, B, and Island and surrounding sea area	Factories and Designated Work Places	0.5 mg/L

Notes:

1. The levels listed in this table shall be applied to any of the factories below and the levels stipulated by National Standards shall be applied to factories other than those listed below (as to the level of boron and its compounds and fluorine and its compounds of the factories that the levels listed in this table are not applied to, the standard levels defined for the effluent discharged to Waters of Japan other than sea area):

- Factory built by construction started on or after 1 April 2001. Factory built by construction started on or after 1 April 2002 if it is a factory that discharges the effluent containing Boron and its compounds or Fluorine and its compounds. As for the levels of 1,4-dioxane, factory build by construction started on or after 1 August 2012.

- Factory that was already built or under construction on 31 March 2001 and has changed the structure of its effluent source facility on or after 1 April 2001 resulting in increased effluent. Factory that was already built or under construction on 31 March 2002 and has changed the structure of its effluent source facility on or after 1 April 2002 resulting in increased effluent, if the factory is the one that discharges the effluent containing boron and its compounds or fluorine and its compounds. As for the levels of 1,4-dioxane, factory that was already built or under construction on 31 July 2012 and has changed the structure of its effluent source facility on or after 1 August 2012 resulting in increased effluent.

2. For details of water area category, refer to Table C4.T32.

3. Factories:

3.1 Factory that uses a motor that produce a total rated output of 2.2 kw or greater for continuous manufacturing, processing or working procedure (or factory that has been planned to continue the production for a year or longer if it produces ready-mixed concrete).

3.2 Factory using a motor that produce a total rated output from 0.75 to < 2.2 kw for continuous manufacturing, processing or working procedure listed below:

- Printing or bookbinding
- Metal stamping, spinning, or cutting (except the procedure that uses a mechanical saw)
- Cutting, shaving, or shredding wood, stone, or synthetic resin
- Polishing or sandblasting glass
- Manufacturing or processing of food using a liquid fuel burner that consumes 20 L of fuel/hr or a furnace that with a grate area $\ge 0.5 \text{ m}^2$.
- 3.3 Factory used for continuous manufacturing, processing or working procedure listed below:
 - Electric or gas welding or cutting of metal
 - Hammering of metal material 0.5 mm thick or thicker or metal polishing, metal removing, or metal tack hammering using electric or pneumatic tools
 - Metal surfacing using shot blast or sandblast
 - Applying paint, dye, or coloring material using spray painting
 - Dry cleaning
 - Electrolyzing or manufacturing of battery cells
 - Assembling, testing, or tuning of TV sets, electric phonographs, alarms, or other similar acoustic devices in a work place with a total floor space $\geq 50 \text{ m}^2$
 - Testing or tuning of engines that combust gas, petroleum or other fuel
 - Power generating work
 - Incineration of wastes using an incinerator with a fire bed $\ge 0.5 \text{ m}^2$ or incineration capacity $\ge 50 \text{ kg/hr}$.

- Photo printing
- Manufacturing or processing procedure that discharges toxic gas
- Manufacturing or processing procedure that discharges hazardous substance
- 4. Designated work places:
 - Car parking facility with parking capacity ≥ 20 cars
 - Car terminal with parking capacity ≥ 10 commercial vehicles
 - -Gasoline, LPG, or LNG station
 - Car washing station that uses steam cleaning or motor-powered washing equipment
 - Waste transshipment or storage site
 - Material storage site with a total area $\geq 100~m^2$
 - Work place with the installation for making blue prints
 - Business establishment that has a laundry facility
 - Business establishment that has a waste oil treatment facility
 - Business establishment that has a sludge treatment facility
 - Business establishment that has a night soil treatment facility with a holding capacity for 200 people or more
 - Business establishment that has a wastewater treatment facility for the effluent discharged from a factory or
 - work place
 - Sewage treatment facility
 - Business establishment that has an air-heating furnace for heating (except a furnace that uses electric or waste heat as an only heat source or combusts a gas containing 0.1 % of sulfur compound by volume only)
 - Business establishment that has a boiler (except a boiler that uses electric or waste heat as an only heat source or has a heat transfer area $<5 \text{ m}^2$ when calculated in accordance with JIS B8201 and B8203 (or $<10 \text{ m}^2$ when such a boiler combusts a gas containing 0.1 % of sulfur compound by volume only))
 - Business establishment that has a gas turbine (except a turbine with combustion capacity \leq 50 L in heavy oil equivalent per hour, turbine for emergency use) or an gas engine (except a gas engine with combustion capacity equal to or \leq 5 L in heavy oil equivalent per hour, turbine for emergency use)
 - Business establishment that has an incinerator (except an incinerator with a fire bed equal to or $< 0.5 \text{ m}^2$ and incineration capacity $\leq 50 \text{ kg/hr.}$)
 - Business establishment that has a pumping facility to pump up ground water for air conditioning, toilet flushing, or car washing equipment and a public bath with a total floor space > 150 m² that has a pumping facility
 - Business establishment that has a sedimentation or filtration facility as a water treatment facility for drinking or industrial water supply system or private industrial water supply system (except a facility that is used for a business establishment with a water treatment capacity < 10,000 m³/day)
 - Hospital with 300 or more beds

Water	Water	Area Subcategory	Area Description
Area Category			
Category		Edo River water area	The water area of the Edo River from the border between Tokyo and Saitama (hereafter referred to as "Saitama border") down to the left (adjacent to Yagiri, Matsudo, Chiba) and right (adjacent to 5-chome, Shibamata, Katsushika, Tokyo) banks by the intake of Kuriyama water treatment plant and Waters of Japan that flows into the area
er Area	River	Tama River water area	The water area of the Tama River mainstream (except the area that lies downstream of the left (adjacent to 2-4, Kamata, Setagaya, Tokyo) and right (adjacent to Unane, Kawasaki, Kanagawa) banks by the intake of Kinutashimo water treatment plant and Ogouchi Reservoir known as Lake Okutama) and Waters of Japan that flows into the area
Headwater Area		Kasumi River water area	The water area of the Kasumi River mainstream and the Yabata River (only the areas of both rivers that lie upstream of Saitama border) and Waters of Japan that flows into the area
		Nariki River water area	Waters of Japan source areas of the Nariki River mainstream that lies upstream of Saitama border and Waters of Japan that flows into the area
	Lake and reservoir	Ogouchi reservoir	Ogouchi reservoir (Lake Okutama)
General Water Area A	River	Edo River water area (Downstream)	The water area of the Edo River mainstream from the intake of Kuriyama water treatment plant down to the left (adjacent to Maihama, Urayasu, Chiba) and right (adjacent to 5-chome, Rinkaicho, Edogawa, Tokyo) banks of the river estuary and Waters of Japan (except Shinnaka River) that flows into the area
		Tama River water area (Downstream A)	The water area of the Tama River mainstream from the left (1-5, Denenchofu, Oota, Tokyo) and right (Kamimarukotennjin, Kawasaki, Kanagawa) banks by the intake of Kinutashimo water treatment plant to Chofu water intake gate and Waters of Japan that flows into the area
		Tama River water area (Downstream B)	The water area of the Tama River mainstream from Chofu water intake gate to the left (adjacent to 3-33 Haneda, Oota, Tokyo) and right (adjacent to 1 Daishigawara, Kawasaki, Kanagawa) banks of the river estuary and Waters of Japan that flows into the area
General Water Area B	River	Ara River water area	The water area and the connecting Waters of Japan that covers the areas below: 1 The area of the Ara River mainstream from Saitama border to the left (the south end of Sewaritei) and right (adjacent to 3-7 Shinsuna, Kotou-ku, Tokyo) banks of the river estuary 2 The area of the Naka River mainstream from Saitama border to the left (adjacent to 1-1 Seishincho, Edogawa-ku, Tokyo) and right (the south end of Sewaritei) banks of the river estuary 3 The Shin Naka River 4 Upstream of the left (the west end of 8 Toyomicho, Chuo-ku, Tokyo) and right (the east end of 1-10 Kaigan, Minato-ku, Tokyo) banks of the Sumida River mainstream 5 The area of the branch river of Sumida River from its left (adjacent to 2- 1 Toyosu, Koto-ku, Tokyo) and right (at the east end of 2-2 Harumi, Chuo-ku, Tokyo) banks to the junction point that connects to the Sumida River 6 The area of the Shingashi River that lies downstream from Saitama

Table C4.T32.	Water Area	Category of	of Tokyo	Prefecture
1001007.152.	water mea	Category	JI IOKYO	refecture

Water	Water	Area Subcategory	Area Description
Area			
Category			hordor
			 border 7 The area of the Ayase River from Saitama border to its junction point that connect the Naka River 8 The areas of the Shirako River, Kuriome River, Yanase River, Nobidomeyousui, and Furo River that lie upstream of Saitama border 9 Kotokasen (Waters of Japan traveling along the river bank from the south end of right bank of the Ara River at 3-7 Shinsuna, Koto-ku, Tokyo through the south end of 1 Edagawa, Koto-ku, Tokyo to the east end of Aioi Bridge at 2-1 Ecchujima, Koto-ku where it reaches the nearby coast)
		Jonan water area	The water area and the connecting Waters of Japan that covers the areas below: 1 The area of the Furu River upstream of its left (adjacent to 1-15 Kaigan, Minato-ku, Tokyo) and right (adjacent to 2-7 Kaigan, Minato-ku, Tokyo) banks 2 The area of the Meguro River upstream of its left (adjacent to 1-39 Higashishinagawa, Shinagawa-ku, Tokyo) and right (adjacent to 3-8 Higashishinagawa, Shinagawa-ku, Tokyo) banks 3 Upstream of the left (2 Konan, Minato-ku, Tokyo) and right (adjacent to 1-3 Higashishinagawa, Shinagawa-ku, Tokyo) banks of the branch river of Meguro River. 4 Upstream of the left (adjacent to 2-27 Higashishinagawa, Shinagawa-ku, Tokyo) and right (1-6 Minamioi, Shinagawa-ku, Tokyo) banks of the Tachiai River 5 Upstream of the left (adjacent to 1-36 Omorihigashi, Ota-ku, Tokyo) and right (adjacent to 1-37 Omorihigashi, Ota-ku, Tokyo) banks of the Uchi River 6 Upstream of the left (adjacent to 5-28 Omorihigashi, Ota-ku, Tokyo) and right (adjacent to 4-4 Omorihiminami, Ota-ku, Tokyo) banks of the Kyu- Nomi River 7 Upstream of the left (adjacent to 5-6-2 Omoriminami, Ota-ku, Tokyo) and right (adjacent to 6-3-1 Higashikojiya, Ota-ku, Tokyo) banks of the Nomi River
		Tsurumi River water area	The Tsurumi River upstream above the border between Tokyo and Kanagawa (hereafter referred to "Kanagawa border"), the Onda River upstream above Kanagawa border and Waters of Japan connecting to these rivers
		Sakai River water area	Upstream above Kanagawa border of the Sakai River mainstream and Waters of Japan connecting to the river
	Sea	Tokyo Bay water area	Coastal area along the seashore of Tokyo from the right bank of the Edo River estuary to Tama River estuary and Waters of Japan connecting to this area which do not belong to other water area
Islands and	River	Islands' fresh water areas	The rivers and the connecting Waters of Japan in the islands of Izu Island Ogasawara Islands
their sea water area	Sea	Islands' sea water areas	Sea water areas surrounding Izu and Ogasawara Islands

Table C4.T33. Effluent Standards for Facilities Located in Kanagawa Prefecture (Effluen	t
Discharged $\geq 50 \text{m}^3/\text{day}$)	

Item	Water Area ³	Allowable limit ¹	Allowable limit ²
Cadmium	Water quality preservation lakes (Area A)	ND	
and its	Water areas other than water quality preservation lakes (Area A)	0.05mg/L	ND
compounds	Area B		
compounds	Sea Area		
	Water quality preservation lakes (Area A)	0.5mg/L	
Cyanide	Water areas other than water quality preservation lakes (Area A)	0.5mg/L	
Cyanide	Area B		
	Sea Area		
Organo-	Water quality preservation lakes (Area A)	ND	
phosphorous	Water areas other than water quality preservation lakes (Area A)	0.2mg/L	ND
compounds	Area B	0.2mg/L	0.2mg/L
compounds	Sea Area	0.2mg/L	0.2mg/L
	Water quality preservation lakes (Area A)	0.05mg/L	
Lead and its	Water areas other than water quality preservation lakes (Area A)		0.05mg/L
compounds ⁴	Area B		
	Sea Area		
Hexavalent chromium compound	Water quality preservation lakes (Area A)	0.05mg/L	
	Water areas other than water quality preservation lakes (Area A)		0.05mg/L
	Area B		
	Sea Area		
A	Water quality preservation lakes (Area A)	0.01mg/L	
Arsenic and its	Water areas other than water quality preservation lakes (Area A)		0.01mg/L
compounds ⁵	Area B		
	Sea Area		
Fluorine and	Water quality preservation lakes (Area A)	0.8mg/L	
	Water areas other than water quality preservation lakes (Area A)		0.8mg/L
its compounds ⁶	Area B		
compounds	Sea Area		

Notes:

1. Applies if specified establishment was established prior to 1 November 1971.

2. New establishments mean specified establishments established on or after 1 November 1971 (except those under construction prior to 1 November 1971).

3. Water Area Categories:

Water Area A: Chitose River (upstream of junction where Ageji Stream connects), Niizaki River (upstream of the upstream border of Nizakigawa Bridge on the Tokaido Shinkansen Line), Haya River, Sakawa River (upstream of Iizumi Intake Weir), Kaname River (upstream of the upstream border of Tsuchiya Bridge), Sagami River (upstream of Samukawa Intake Weir), and rivers and water channels connecting to these rivers, Water Quality Preservation Lakes: Lake Ashi, Lake Tanzawa, Lake Sagami, Lake Tsukui, Lake Okusagami, Lake Miyagase, and the rivers and water channels connecting to these lakes.

Water Area B: Waters of Japan other than that covered by Water Area A and sea area.

4. The emission standard of Lead and its compounds shall not be applied to the effluent discharged from a specified establishment (installed prior to 1 February 1995 or under construction prior to 31 January 1995) to the water area other than Water Quality Preservation Lakes in Water Area A.

5. The emission standard value "0.01" of Arsenic and its compounds shall be read as "0.05" when applied to the effluent discharged from a specified establishment (installed prior to 1 February 1995 or under construction prior to 31 January 1995) to the water area other than Water Quality Preservation Lakes in Water Area A.

6. The emission standard of fluorine and its compounds shall not be applied to the effluent less than average of 50m³/day discharged from a specified establishment (installed prior to 1 July 2002 or under construction prior to 30 June 2002) to the water area other than Water Quality Preservation Lakes in Water Area A.

Item	Category	Allowable limit ²	Allowable limit ³
	1) Other facility ⁴		
e	Effluent discharged <100 m ³ /day		15 mg/L
Fluorine	Effluent discharged $\geq 100 \text{ m}^3/\text{day}$ and $< 1,000 \text{ m}^3/\text{day}$		15 mg/L
luo	Effluent discharged \geq 1,000 m ³ /day and <10,000 m ³ /day		15 mg/L
Ľ.	Effluent discharged $\geq 10,000 \text{ m}^3/\text{day}$ and $< 100,000 \text{ m}^3/\text{day}$		15 mg/L
	Effluent discharged $\geq 100,000 \text{ m}^3/\text{day}$		15 mg/L

Notes:

1. Applies to installation with discharge effluent \geq 50 m³/day, unless indicated.

2. Applies if facility was established prior to 24 June 1972.

3. Applies if facility was established on or after 24 June 1972.

4. Other facility: gas supply facility, water supply facility, acid or alkali surface treatment facility, electroplating facility, central kitchen, restaurant, waste oil treatment facility (established on or after 24 June 1972).

C5. <u>CHAPTER 5</u>

HAZARDOUS MATERIAL

C5.1. <u>SCOPE</u>

This Chapter contains criteria for the storage, handling, and disposition of hazardous materials. It does not cover solid or hazardous waste, underground storage tanks, petroleum storage, and related spill contingency and emergency response requirements, which are covered under other Chapters. These JEGS do not cover munitions.

C5.2. <u>DEFINITIONS</u>

C5.2.1. <u>Hazardous Chemical Warning Label</u>. A label, tag, or marking on a container that provides the following information:

C5.2.1.1. Identification/name of hazardous chemicals;

C5.2.1.2. Appropriate hazard warnings; and

C5.2.1.3. The name and address of the manufacturer, importer, or other responsible party; and that is prepared in accordance with DoDI 6050.05, "DoD Hazard Communication (HAZCOM) Program," May 15, 2011.

C5.2.2. <u>Hazardous Material</u>. Any material that is capable of posing an unreasonable risk to health, safety, or the environment if improperly handled, stored, issued, transported, labeled, or disposed because it displays a characteristic listed in Table C5.T1, "Typical Hazardous Materials Characteristics," or the material is listed in Table AP1.T4, "List of Hazardous Waste/Substances/Materials." Munitions are excluded.

C5.2.3. <u>Hazardous Material Information Resource System (HMIRS)</u>. The computer-based information system developed to accumulate, maintain and disseminate important information on hazardous material used by the Department of Defense in accordance with DoD Instruction 6050.05, "DoD Hazard Communication (HAZCOM) Program," May 15, 2011.

C5.2.4. <u>Hazardous Material Shipment</u>. Any movement of hazardous material in a DoD land vehicle, either from an installation to a final destination off the installation, or from a point of origin off the installation to a final destination on the installation, in which certification of the shipment is involved.

C5.2.5. <u>Material Safety Data Sheet (MSDS)/Safety Data Sheet (SDS)</u>. A form prepared by manufacturers or importers of chemical products to communicate to users the chemical and physical properties and the hazardous effects of a particular product.

C5.3. <u>CRITERIA</u>

C5.3.1. Storage and handling of hazardous materials will adhere to the DoD Component policies, including Joint Service Publication on Storage and Handling of Hazardous Materials. Defense Logistics Agency Instruction (DLAI) 4145.11, Army Technical Manual (TM) 38-410, Naval Supply Publication (NAVSUP PUB) 573, Air Force Joint Manual (AFJMAN) 23-209, and Marine Corps Order (MCO) 4450.12A, "Storage and Handling of Hazardous Materials," January 13, 1999 provide additional guidance on the storage and handling of hazardous materials. The International Maritime Dangerous Goods (IMDG) Code and appropriate DoD and Component instructions provide requirements for international maritime transport of hazardous materials originating from DoD installations. International air shipments of hazardous materials originating from DoD component guidance, including Air Force Manual 24-204, (Interservice) TM 38-250, NAVSUP PUB 505, MCO P4030.19J, and DLAI 4145.3, DCMAD1, Ch3.4 (HM24), "Preparing Hazardous Materials for Military Air Shipments," 3 December 2012.

C5.3.2. Hazardous material dispensing areas will be properly maintained. Drums/containers must not be leaking. Drip pans/absorbent materials will be placed under containers as necessary to collect drips or spills. Container contents will be clearly marked. Dispensing areas will be located away from catch basins and floor/storm drains.

C5.3.3. Installations will ensure that for each hazardous material shipment:

C5.3.3.1. The shipment is accompanied throughout by shipping papers that clearly describe the quantity and identity of the material and include an MSDS/SDS;

C5.3.3.2. All drivers are trained on the hazardous material included in the shipment including health risks of exposure and the physical hazards of the material, including potential for fire, explosion, and reactivity;

C5.3.3.3. Drivers will be trained on spill control and emergency notification procedures;

C5.3.3.4. For any hazardous material categorized on the basis of Appendix 1, the shipping papers and briefing for the driver include identification of the material in terms of the nine United Nations (UN) Hazard Classes;

C5.3.3.5. The transport vehicles are subjected to a walk-around inspection by the driver before and after the hazardous material is loaded; and

C5.3.3.6. Packages are labeled in accordance with paragraph C5.3.7.

C5.3.3.7. Vehicle Placarding is prohibited outside DoD installations in Japan.

C5.3.4. Each installation will maintain a master listing of all storage locations for hazardous material as well as an inventory of all hazardous materials contained therein. (see paragraph C18.3.2).

C5.3.5. Each MSDS/SDS shall be in English or Japanese, and shall contain at least the following information:

C5.3.5.1. The identity used on the label.

C5.3.5.1.1. If the hazardous chemical is a single substance, its chemical and common name.

C5.3.5.1.2. If the hazardous chemical is a mixture that has been tested as a whole to determine its hazards, the chemical and common name(s) of the ingredients that contribute to these known hazards, and the common name(s) of the mixture itself; or

C5.3.5.1.3. If the hazardous chemical is a mixture that has not been tested as a whole:

C5.3.5.1.3.1. The chemical and common name(s) of all ingredients that have been determined to be health hazards, and that comprise 1% or greater of the composition, except that chemicals identified as carcinogens shall be listed if the concentrations are 0.1% or greater;

C5.3.5.1.3.2. The chemical and common name(s) of all ingredients that have been determined to be health hazards, and that comprise less than 1% (0.1% for carcinogens) of the mixture, if there is evidence that the ingredient(s) could be released from the mixture in concentrations that would exceed an established Occupational Safety and Health Administration (OSHA)-permissible exposure limit, or could present a health hazard to employees; and

C5.3.5.1.3.3. The chemical and common name(s) of all ingredients that have been determined to present a physical hazard when present in the mixture.

C5.3.5.2. Physical and chemical characteristics of the hazardous chemical (such as vapor pressure, flash point);

C5.3.5.3. The physical hazards of the hazardous chemical, including the potential for fire, explosion, and reactivity;

C5.3.5.4. The health hazards of the hazardous chemical, including signs and symptoms of exposure, and any medical conditions that are generally recognized as being aggravated by exposure to the chemical;

C5.3.5.5. The primary route(s) of entry (inhalation, skin absorption, ingestion, etc.);

C5.3.5.6. The appropriate occupational exposure limit recommended by the chemical manufacturer, importer, or employer preparing the MSDS/SDS, where available;

C5.3.5.7. Whether the hazardous chemical has been found to be a potential carcinogen;

C5.3.5.8. Any generally applicable precautions for safe handling and use that are known to the chemical manufacturer, importer, or employer preparing the MSDS/SDS, including

appropriate hygienic practices, protective measures during repair and maintenance of contaminated equipment, and procedures for clean-up of spills and leaks;

C5.3.5.9. Any generally applicable control measures that are known to the chemical manufacturer, importer, or employer preparing the MSDS/SDS, such as appropriate engineering controls, work practices, or personal protective equipment;

C5.3.5.10. Emergency and first aid procedures;

C5.3.5.11. The date of preparation of the MSDS/SDS or the last change to it; and

C5.3.5.12. The name, address and telephone number of the chemical manufacturer, importer, employer, or other responsible party preparing or distributing the MSDS/SDS who can provide additional information on the hazardous chemical and appropriate emergency procedures, if necessary.

C5.3.6. Each work center will maintain a file of MSDSs/SDSs for each hazardous material procured, stored, or used at the work center. MSDSs that are not contained in the HMIRS and those MSDSs/SDSs prepared for locally purchased items should be incorporated into the HMIRS. A file of MSDS information not contained in the HMIRS should be maintained on site.

C5.3.7. All hazardous materials on DoD installations will have a Hazardous Chemical Warning Label in accordance with DoD Instruction 6050.05, "DoD Hazard Communication (HAZCOM) Program," May 15, 2011 (or Japanese equivalent) and have MSDS/SDS information either available or in the HMIRS in accordance with DoD Instruction 6050.05, "DoD Hazard Communication (HAZCOM) Program," May 15, 2011 and other DoD Component instructions. These requirements apply throughout the life-cycle of these materials.

C5.3.8. DoD installations will reduce the use of hazardous materials where practical through resource recovery, recycling, source reduction, acquisition, or other minimization strategies in accordance with Service guidance on improved hazardous material management processes and techniques.

C5.3.9. All excess hazardous material will be processed through the Defense Logistics Agency (DLA) Disposition Services in accordance with the procedures in DoD 4160.21-M, "Defense Materiel Disposition Manual," August 18, 1997, authorized by DoD 4140.1-R, "Department of Defense Materiel Management Regulation," May 23, 2003. The DLA Disposition Services will only donate, transfer, or sell hazardous material to environmentally responsible parties. This paragraph is not intended to prohibit the transfer of usable hazardous material between DoD activities participating in a regional or local pharmacy or exchange program.

C5.3.10. All personnel who use, handle, or store hazardous materials will be trained in accordance with DoD Instruction 6050.05, "DoD Hazard Communication (HAZCOM) Program," May 15, 2011, and other DoD Component instructions.

C5.3.11. The installation must prevent the unauthorized entry of persons or livestock into the hazardous materials storage area.

Table C5.T1. Typical Hazardous Materials Characteristics.

1. The item is a health or physical hazard. Health hazards include carcinogens, corrosive materials, irritants, sensitizers, toxic materials, and materials that damage the skin, eyes, or internal organs. Physical hazards include combustible liquids, compressed gases, explosives, flammable materials, organic peroxides, oxidizers, pyrophoric materials, unstable (reactive) materials and water-reactive materials.

2. The item and/or its disposal is regulated by the GoJ because of its hazardous nature.

3. The item has a flashpoint below 93°C (200°F) closed cup, or is subject to spontaneous heating or is subject to polymerization with release of large amounts of energy when handled, stored, and shipped without adequate control.

4. The item is a flammable solid or is an oxidizer or is a strong oxidizing or reducing agent with a standard reduction potential of > 1.0 volt or < -1.0 volt.

5. In the course of normal operations, accidents, leaks, or spills, the item may produce dusts, gases, fumes, vapors, mists, or smokes with one or more of the above characteristics.

6. The item has special characteristics that, in the opinion of the manufacturer or the DoD Components, could cause harm to personnel if used or stored improperly.

C6. <u>CHAPTER 6</u>

HAZARDOUS WASTE

C6.1. <u>SCOPE</u>

This Chapter contains criteria for a comprehensive management program to ensure that hazardous waste is identified, stored, transported, treated, disposed, and recycled in an environmentally sound manner.

C6.2. <u>DEFINITIONS</u>

C6.2.1. <u>Acute Hazardous Waste</u>. Those wastes listed in Table AP1.T4, "List of Hazardous Waste/Substances/Material." with a U.S. Environmental Protection Agency (USEPA) waste number with the "P" designator, or those hazardous wastes in Table AP1.T3 with Hazard Code "H".

C6.2.2. Contaminated Soil. A classification term used in Japan that describes soil, containing elevated levels of contaminates, that has potential to exhibit harm to human health or the environment. Contaminated soil is a term relevant to the transportation, treatment or disposal of soil by Japanese contractors, not to the management of contaminated soil within USFJ installations (see Table AP1.T7).

C6.2.3. <u>Disposal</u>. The discharge, deposit, injection, dumping, spilling, leaking, or placing of any hazardous waste into or on any land or water that would allow the waste or constituent to enter the environment. Proper disposal effectively mitigates hazards to human health and the environment.

C6.2.4. <u>DoD Hazardous Waste Generator</u>. The DoD considers a generator to be the installation, or activity on an installation, that produces a hazardous waste.

C6.2.5. <u>Elementary Neutralization</u>. A process of neutralizing a HW, that is hazardous only because of the corrosivity characteristic. It must be accomplished in a tank, transport vehicle, or container.

C6.2.6. <u>Hazardous Constituent</u>. A chemical compound listed by name in Table AP1.T4, "List of Hazardous Waste/Substances/Material," or that possesses the characteristics described in section AP1.1.

C6.2.7. <u>Hazardous Waste</u>. A discarded material that may be solid, semi-solid, liquid, or contained gas, and either exhibits a characteristic of a hazardous waste as defined in section AP1.1 or is listed as a hazardous waste in Tables AP1.T1 through AP1.T4. Excluded from this definition are domestic sewage sludge, household wastes, and medical wastes.

C6.2.8. <u>Hazardous Waste Accumulation Point (HWAP)</u>. A shop, site, or other work center where hazardous wastes are accumulated until removed to a Hazardous Waste Storage Area (HWSA) or shipped for treatment or disposal. A HWAP may be used to accumulate no

more than 208 liters (55 gallons) of hazardous waste, or 1 liter (1 quart) of acute hazardous waste, from each waste stream. The HWAP must be at or near the point of generation and under the control of the operator.

C6.2.9. <u>Hazardous Waste Fuel</u>. Hazardous wastes burned for energy recovery. Fuel produced from hazardous waste by processing, blending, or other treatment is also hazardous waste fuel.

C6.2.10. <u>Hazardous Waste Generation</u>. Any act or process that produces hazardous waste (HW) as defined in this document.

C6.2.11. <u>Hazardous Waste Log</u>. A listing of HW deposited and removed from an HWSA. Information such as the waste type, volume, location, and storage removal dates should be recorded.

C6.2.12. <u>Hazardous Waste Profile Sheet (HWPS)</u>. A document that identifies and characterizes the waste by providing user's knowledge of the waste, and/or lab analysis, and details the physical, chemical, and other descriptive properties or processes that created the hazardous waste.

C6.2.13. <u>Hazardous Waste Storage Area (HWSA)</u>. One or more locations on a DoD installation where HW is collected prior to shipment for treatment or disposal. An HWSA may store more than 55 gallons of a HW stream, and more than one quart of an acute HW stream.

C6.2.14. <u>Hazardous Waste Storage Area Manager</u>. A person, or agency, on the installation assigned the operational responsibility for receiving, storing, inspecting, and general management of the installation's HWSA or HWSA program.

C6.2.15. <u>Industrial Waste</u>. A classification term used in Japan that describes waste resulting from business activity and includes ash, sludge, waste oil, waste acid, waste alkali, and waste plastic. Industrial waste is a term relevant to the transportation, treatment or disposal of wastes by Japanese contractors, not to the management of HW within USFJ installations.

C6.2.16. <u>Land Disposal</u>. Placement in or on the land, including, but not limited to, land treatment, facilities, surface impoundments, underground injection wells, salt dome formations, salt bed formations, underground mines or caves.

C6.2.17. <u>Specially Controlled General Wastes (SCGW)</u>. A classification term used in Japan that describes HW that exhibit the characteristics of explosivity, corrosivity, infection or harm to human health or environment originating from non-industrial sources. SCGW is a term relevant to the transportation, treatment or disposal of wastes by Japanese contractors, not to the management of HW within USFJ installations (see Table AP1.T5).

C6.2.18. <u>Specially Controlled Industrial Wastes (SCIW)</u>. A classification term used in Japan that describes HW that exhibit the characteristics of explosivity, corrosivity, infection or harm to human health or environment from industrial sources. SCIW is a term relevant to the transportation, treatment or disposal of wastes by Japanese contractors, not to the management of HW within USFJ installations (see Tables AP1.T5 and AP1.T6).

C6.2.19. <u>Treatment</u>. Any method, technique, or process, excluding elementary neutralization, designed to change the physical, chemical, or biological characteristics or composition of any hazardous waste that would render such waste non-hazardous, or less hazardous; safer to transport, store, or dispose of; or amenable for recovery, amenable for storage, or reduced in volume.

C6.2.20. <u>Unique Identification Number</u>. A number assigned to generators of hazardous waste to identify the generator and used to assist in tracking the waste from point of generation to ultimate disposal. The unique identification number used by all generators in Japan shall be DoD Activity Address Code (DoDAAC).

C6.2.21. <u>Used Oil Burned for Energy Recovery</u>. Used oil that is burned for energy recovery is termed "used oil fuel." Used oil fuel includes any fuel produced from used oil by processing, blending, or other treatment. "Used oil," means any oil or other waste petroleum, oil, or lubricant (POL) product that has been refined from crude oil, or is synthetic oil, has been used and as a result of such use, is contaminated by physical or chemical impurities, or is off specification and cannot be used as intended. Although used oil may exhibit the characteristics of reactivity, toxicity, ignitability, or corrosivity, it is still considered used oil, unless it has been mixed with hazardous waste. Used oil mixed with hazardous waste is a hazardous waste and will be managed as such.

C6.3. <u>CRITERIA</u>

C6.3.1. DoD Hazardous Waste Generators.

C6.3.1.1. <u>Hazardous Waste Determination and Characterization</u>. Generators will identify and characterize the wastes generated at their site using their knowledge of the materials and processes that generated the waste, or through laboratory analysis of the waste. Generators will identify inherent hazardous characteristics associated with a waste in terms of physical properties (e.g., solid, liquid, contained gases), chemical properties (e.g., chemical constituents, technical or chemical name), and/or other descriptive properties (e.g., ignitable, corrosive, reactive, toxic). The properties defining the characteristics shall be measurable by standardized, and available Japanese and/or equivalent USEPA testing protocols.

C6.3.1.2. A Hazardous Waste Profile Sheet (HWPS) will be used to identify each hazardous waste stream. The HWPS must be updated by the generator, as necessary, to reflect any new waste streams or process modifications that change the character of the hazardous waste handled at the storage area.

C6.3.1.3. Each generator will use their unique identification number for all recordkeeping, reports, and manifests for hazardous waste.

C6.3.1.4. Pre-Transport Requirements

C6.3.1.4.1. <u>Transportation</u>

C6.3.1.4.1.1. When transporting HW via commercial transportation on Japanese public roads and highways, HW generators will prepare off-installation HW shipments in

compliance with applicable Japanese transportation regulations. Requirements may include manifesting, marking, containerization, and labeling. Hazardous waste designated for international transport will be prepared in accordance with applicable international regulations. In the absence of Japanese regulations, international standards will be used.

C6.3.1.4.1.2. When transporting HW via military vehicle on Japanese public roads and highways, generators will ensure compliance with Service regulations for the transport of hazardous materials and, if required by applicable international agreement (Status of Forces Agreement (SOFA), basing, etc.), Japanese transportation regulations. Vehicle placarding is prohibited outside DoD installations in Japan.

C6.3.1.4.2. <u>Manifesting</u>. All HW leaving the installation will be accompanied by a serially-numbered manifest to ensure a complete audit trail from point of origin to ultimate disposal. The manifest will include the information listed below. Japanese forms will be used when the destination is a Japanese facility; otherwise, DD Form 1348-1A, "Issue Release/Receipt Document" may be used. This manifest should include:

C6.3.1.4.2.1. Generator's name, address, and telephone number;

C6.3.1.4.2.2. Generator's unique identification number;

C6.3.1.4.2.3. Transporter's name, address, and telephone number;

C6.3.1.4.2.4. Destination name, address, and telephone number;

C6.3.1.4.2.5. Description of waste (including USEPA HW number from Tables AP1.T1 through AP1.T4, and the JEGS HW code from Tables AP1.T5 and AP1.T6);

C6.3.1.4.2.6.	Total quantity of waste;
C6.3.1.4.2.7.	Date of shipment; and
C6.3.1.4.2.8.	Date of receipt.

C6.3.1.4.3. Generators will maintain an audit trail of HW from the point of generation to disposal. Generators using the disposal services of DLA Disposition Services will obtain a signed copy of the manifest from the initial DLA Disposition Services' recipient of the waste, at which time the DLA Disposition Services will assume responsibility. A generator, as provided in a host-tenant agreement, that uses the HW management and/or disposal program of a DoD Component that has a different unique identification number (see definition C6.2.20) will obtain a signed copy of the manifest from the receiving component, at which time the receiving component will assume responsibility for subsequent storage, transfer, and disposal of the waste. Activities desiring to dispose of their HW outside the DLA Disposition Services system will develop their own manifest tracking system to provide an audit trail from point of generation to ultimate disposal.

C6.3.2. <u>Hazardous Waste Accumulation Point (HWAP)</u>

C6.3.2.1. A HWAP is defined in paragraph C6.2.8. Each HWAP must be designed and operated to provide appropriate segregation for different waste streams, including those that are chemically incompatible. Each HWAP will have warning signs (National Fire Protection Association or appropriate international sign) appropriate for the waste being accumulated at that site.

C6.3.2.2. A HWAP will comply with the storage limits in paragraph C6.2.8. When these limits have been reached, the generator will make arrangements within five working days to move the HW to an HWSA or ship it off-site for treatment or disposal. Arrangements must include submission of all appropriate turn-in documents to initiate the removal (e.g., DD 1348-1A) to appropriate authorities responsible for removing the HW (e.g., DLA Disposition Services). Wastes intended to be recycled or used for energy recovery (for example, used oil or antifreeze) are exempt from the 208-liter (55-gallons)/1-liter (1-Quart) volume accumulation limits, but must be transported off-site to a final destination facility within one year.

C6.3.2.3. All criteria of paragraph C6.3.4, "Use and Management of Containers," apply to HWAPs with the exception of paragraph C6.3.4.1.5, "Weekly Inspections."

C6.3.2.4. The following provisions of paragraph C6.3.5, "Recordkeeping Requirements," apply to HWAPs: C6.3.5.1 ("Turn-in Documents"), C6.3.5.5 ("Manifests"), and C6.3.5.6 ("Waste Analysis/Characterization Records").

C6.3.2.5. <u>Personnel Training</u>. Personnel assigned HWAP duty must successfully complete appropriate HW training necessary to perform their assigned duties. At a minimum, this must include pertinent waste handling and emergency response procedures. Generic HW training requirements are described in paragraph C6.3.9.

C6.3.3. <u>Hazardous Waste Storage Area (HWSA)</u>

C6.3.3.1. <u>Location Standards</u>. To the maximum extent possible, all HWSAs will be located to minimize the risk of release due to seismic activity, floods, or other natural events. For facilities located where they may face such risks, the installation spill prevention and control plan must address the risk.

C6.3.3.1.1. <u>Design and Operation of HWSAs</u>. HWSAs must be designed, constructed maintained, and operated to minimize the possibility of a fire, explosion, or any unplanned release of HW or HW constituents to air, soil, groundwater or surface water that could threaten human health or the environment. Hazardous waste should not be stored longer than one year in a HWSA.

C6.3.3.2. Waste Analysis and Verification

C6.3.3.2.1. <u>Waste Analysis Plan</u>. The HWSA manager, in conjunction with the installation(s) served, will develop a plan to determine how and when wastes are to be analyzed. The waste analysis plan will include procedures for characterization and verification testing of

both on-site and off-site hazardous waste. The plan should include: parameters for testing and rationale for choosing them, frequency of analysis, test methods, and sampling methods.

C6.3.3.2.2. <u>Maintenance of Waste Analysis File</u>. The HWSA must have, and keep on file, a HWPS for each waste stream that is stored at each HWSA.

C6.3.3.2.3. <u>Waste Verification</u>. Generating activities will provide identification of incoming waste on the HWPS to the HWSA manager. Prior to accepting the waste, the HWSA manager will:

C6.3.3.2.3.1. Inspect the waste to ensure it matches the description provided.

C6.3.3.2.3.2. Ensure that no waste is accepted for storage unless a HWPS is provided, or is available and properly referenced.

C6.3.3.2.3.3. Request a new HWPS from the generator if there is reason to believe that the process generating the waste has changed;

C6.3.3.2.3.4. Analyze waste shipments in accordance with the waste analysis plan to determine whether it matches the waste description on the accompanying manifest and documents; and

C6.3.3.2.3.5. Reject shipments that do not match the accompanying waste descriptions unless the generator provides an accurate description.

C6.3.3.3. Security

C6.3.3.3.1. <u>General</u>. The installation must prevent the unknowing entry, and minimize the possibility for unauthorized entry, of persons or livestock onto the HWSA grounds.

C6.3.3.3.2. <u>Security System Design</u>. An acceptable security system for a HWSA consists of either:

C6.3.3.3.2.1. A 24-hour surveillance system (e.g., television monitoring or surveillance by guards or other designated personnel) that continuously monitors and controls entry into the HWSA; or

C6.3.3.3.2.2. An artificial or natural barrier (e.g., a fence in good repair or a fence combined with a cliff) that completely surrounds the HWSA, combined with a means to control entrance at all times (e.g., an attendant, television monitors, locked gate, or controlled roadway access).

C6.3.3.3.3. <u>Required Signs</u>. A sign with the legend "Danger Unauthorized Personnel Keep Out," must be posted at each entrance to the HWSA, and at other locations, in sufficient numbers to be seen from any approach to the HWSA. The legend must be written in English and Japanese, and must be legible from a distance of at least 25 feet. Existing signs with a legend other than "Danger Unauthorized Personnel Keep Out," may be used if the legend on the sign indicates that only authorized personnel are allowed to enter the HWSA, and that entry can be dangerous.

C6.3.3.4. <u>Required Aisle Space</u>. Aisle space must allow for unobstructed movement of personnel, fire protection equipment, spill control equipment, and decontamination equipment to any area of facility operation during an emergency. Containers must not obstruct an exit.

C6.3.3.5. Access to Communications or Alarm System

C6.3.3.5.1. <u>General</u>. Whenever HW is being poured, mixed, or otherwise handled, all personnel involved in the operation must have immediate access to an internal alarm or emergency communication device, either directly or through visual or voice contact with another person.

C6.3.3.5.2. If there is only one person on duty at the HWSA premises, that person must have immediate access to a device, such as a telephone (immediately available at the scene of operation) or a hand-held two-way radio, capable of summoning external emergency assistance.

C6.3.3.6. <u>Required Equipment</u>. All HWSAs must be equipped with the following:

C6.3.3.6.1. An internal communications or alarm system capable of providing immediate emergency instruction (voice or signal) to HWSA personnel.

C6.3.3.6.2. A device, such as an intrinsically safe telephone (immediately available at the scene of operations) or a hand-held two-way radio, capable of summoning emergency assistance from installation security, fire departments, or emergency response teams.

C6.3.3.6.3. Portable fire extinguishers, fire control equipment appropriate to the material in storage (including special extinguishing equipment as needed, such as that using foam, inert gas, or dry chemicals), spill control equipment, and decontamination equipment.

C6.3.3.6.4. Water at adequate volume and pressure to supply water hose streams, foam-producing equipment, automatic sprinklers, or water spray systems.

C6.3.3.6.5. Readily available personal protective equipment appropriate to the materials stored, and eyewash and shower facilities.

C6.3.3.6.6. <u>Testing and Maintenance of Equipment</u>. All HWSA communications alarm systems, fire protection equipment, spill control equipment, and decontamination equipment, where required, must be maintained to ensure its proper operation in time of emergency.

C6.3.3.7. General Inspection Requirements

C6.3.3.7.1. <u>General</u>. The installation must inspect the HWSA for malfunctions and deterioration, operator errors, and discharges that may be causing, or may lead to, a release of HW constituents to the environment or threat to human health. The inspections must be

conducted often enough to identify problems in time to correct them before they harm human health or the environment.

C6.3.3.7.2. <u>Types of Equipment Covered</u>. Inspections must include all equipment and areas involved in storage and handling of HW, including all containers and container storage areas, tank systems and associated piping, and all monitoring equipment, safety and emergency equipment, security devices, and operating and structural equipment (such as dikes and sump pumps) that are important to preventing, detecting, or responding to environmental or human health hazards.

C6.3.3.7.3. <u>Inspection Schedule</u>. Inspections must be conducted according to a written schedule that is kept at the HWSA. The schedule must identify the types of problems (e.g., malfunctions or deterioration) that are to be looked for during the inspection (e.g., inoperative sump pump, leaking fitting, or eroding dike).

C6.3.3.7.4. <u>Frequency of Inspections</u>. Minimum frequencies for inspecting containers and container storage areas are found in paragraph C6.3.4.1.5. Minimum frequencies for inspecting tank systems are found in paragraph C6.3.7.5.2. For equipment not covered by those paragraphs, inspection frequency should be based on the rate of possible deterioration of the equipment and probability of an environmental or human health incident if the deterioration or malfunction or any operator error goes undetected between inspections. Areas subject to spills, such as loading and unloading areas, must be inspected daily when in use.

C6.3.3.7.5. <u>Remedy of Problems Revealed by Inspection</u>. The installation must remedy any deterioration or malfunction of equipment or structures that the inspection reveals on a schedule, which ensures that the problem does not lead to an environmental or human health hazard. Where a hazard is imminent or has already occurred, action must be taken immediately.

C6.3.3.7.6. <u>Maintenance of Inspection Records</u>. The installation must record inspections in an inspection log or summary, and keep the records for at least three years from the date of inspection. At a minimum, these records must include the date and time of inspection, the name of the inspector, a notation of the observations made, and the date and nature of any repairs or other remedial actions.

C6.3.3.8. <u>Personnel Training</u>. Personnel assigned HWSA duty must successfully complete an appropriate HW training program in accordance with the training requirements in paragraph C6.3.9.

C6.3.3.9. Storage Practices

C6.3.3.9.1. <u>Compatible Storage</u>. The storage of ignitable, reactive, or incompatible wastes must be handled so that it does not threaten human health or the environment. Dangers resulting from improper storage of incompatible wastes include generation of extreme heat, fire, explosion, and generation of toxic gases.

C6.3.3.9.2. <u>General requirements for ignitable, reactive, or incompatible wastes</u>. The HWSA manager must take precautions to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and welding, hot surfaces, frictional heat, sparks (static, electrical, or mechanical), spontaneous ignition (e.g., from heat producing chemical reactions), and radiant heat. While ignitable or reactive waste is being handled, the HWSA personnel must confine smoking and open flame to specially designated locations. "No Smoking" signs, or the appropriate icon, must be conspicuously placed wherever there is a hazard from ignitable or reactive waste. In areas where access by non-English speaking persons is expected, the "No Smoking" legend must be written in English and in any other language predominant in the area. Water reactive waste cannot be stored in the same area as flammable and combustible liquid.

C6.3.3.10. Closure and Closure Plans

C6.3.3.10.1. <u>Closure</u>. At closure of a HWSA, HW and HW waste residues must be removed from the containment system, including remaining containers, liners, and bases. Closure should be done in a manner which eliminates or minimizes the need for future maintenance or the potential for future releases of HW and according to the Closure Plan.

C6.3.3.10.2. <u>Closure Plan</u>. Closure plans will be developed before a new HWSA is opened. Each existing HWSA will also develop a Closure Plan. The Closure Plan will be implemented concurrent with the decision to close the HWSA. The Closure Plan will include: estimates of the storage capacity of the HW, steps to be taken to remove or decontaminate all waste residues, and estimate of the expected date for closure.

C6.3.4. Use and Management of Containers

C6.3.4.1. <u>Container Handling and Storage</u>. To protect human health and the environment, the following criteria will apply when handling and storing HW containers.

C6.3.4.1.1. Containers holding HW will be in good condition, free from severe rusting, bulging, or structural defects.

C6.3.4.1.2. Containers used to store HW, including overpack containers, must be compatible with the materials stored.

C6.3.4.1.3. Management of Containers

C6.3.4.1.3.1. A container holding HW must always be closed during storage, except when it is necessary to add or remove waste.

C6.3.4.1.3.2. A container holding HW must not be opened, handled, or stored in a manner which may rupture the container or cause it to leak.

C6.3.4.1.3.3. Containers of flammable liquids must be grounded when transferring flammable liquids from one container to the other.

C6.3.4.1.4. Containers holding HW will be marked with a HW marking, and a label indicating the hazard class of the waste contained (flammable, corrosive, etc.).

C6.3.4.1.5. Areas where containers are stored must be inspected weekly for leaking and deteriorating containers as well as deterioration of the containment system caused by corrosion or other factors. Secondary containment systems will be inspected for defects and emptied of accumulated releases or retained storm water.

C6.3.4.2. <u>Containment</u>. Container storage areas must have a secondary containment system meeting the following:

C6.3.4.2.1. Must be sufficiently impervious to contain leaks, spills, and accumulated precipitation until the collected material is detected and removed.

C6.3.4.2.2. The secondary containment system must have sufficient capacity to contain 10% of the volume of stored containers or the volume of the largest container, whichever is greater.

C6.3.4.2.3. Storage areas that store containers holding only wastes that do not contain free liquids need not have a containment system as described in paragraph C6.3.4.2.1., provided the storage area is sloped or is otherwise designed and operated to drain and remove liquid resulting from precipitation, or the containers are elevated or are otherwise protected from contact with accumulated liquid.

C6.3.4.2.4. Rainwater captured in secondary containment areas should be inspected and/or tested prior to release. The inspection or testing must be reasonably capable of detecting contamination by the HW in the containers. Contaminated water shall be treated as HW until determined otherwise.

C6.3.4.3. <u>Special Requirements for Ignitable or Reactive Waste</u>. Areas that store containers holding ignitable or reactive waste must be located at least 15 meters (50 feet) inside the installation's boundary.

C6.3.4.4. Special Requirements for Incompatible Wastes

C6.3.4.4.1. Incompatible wastes and materials must not be placed in the same container.

C6.3.4.4.2. Hazardous waste must not be placed in an unwashed container that previously held an incompatible waste or material.

C6.3.4.4.3. A storage container holding HW that is incompatible with any waste or other materials stored nearby in other containers, piles, open tanks, or surface impoundments, must be separated from the other materials or protected from them by means of a dike, berm, wall, or other device.

C6.3.5. <u>Recordkeeping Requirements</u>

C6.3.5.1. <u>Turn-in Documents</u>. Turn-in documents, e.g., DD 1348-1A or manifests, must be maintained for 5 years.

C6.3.5.2. <u>Hazardous Waste Log</u>. A written HW log will be maintained at the HWSA to record all HW handled and should consist of the following:

C6.3.5.2.1.	Name/address of generator;
C6.3.5.2.2.	Description and hazard class of the hazardous waste;
C6.3.5.2.3.	Number and types of containers;
C6.3.5.2.4.	Quantity of hazardous waste;
C6.3.5.2.5.	Date stored;
C6.3.5.2.6.	Storage location; and

C6.3.5.2.7. Disposition data, to include: dates received, sealed, and transported, and transporter used.

C6.3.5.3. The HW log will be available to emergency personnel in the event of a fire or spill. Logs will be maintained until closure of the installation.

C6.3.5.4. <u>Inspection Logs</u>. Records of inspections should be maintained for a period of 3 years.

C6.3.5.5. <u>Manifests</u>. Manifests of incoming and outgoing hazardous wastes will be retained for a period of 5 years.

C6.3.5.6. <u>Waste Analysis/Characterization Records</u>. These records will be retained until 5 years after closure of the HWSA.

C6.3.5.7. The installation will maintain records, identified in paragraphs C6.3.5.1., C6.3.5.5., and C6.3.5.6. for all HWAPs on the installation.

C6.3.6. <u>Contingency Plan</u>

C6.3.6.1. Each installation will have a contingency plan that describes actions to be taken to contain and clean up spills and releases of HW in accordance with the provisions of Chapter 18, "Spill Prevention and Response Planning."

C6.3.6.2. A current copy of the installation contingency plan must be:

C6.3.6.2.1. Maintained at each HWSA and HWAP, (HWAPs need maintain only portions of the contingency plan that are pertinent to their facilities and operation); and

C6.3.6.2.2. Submitted to all police departments, fire departments, hospitals, and emergency response teams identified in the plan, and upon which the plan relies to provide emergency services. Contingency Plans should be available in both English and Japanese.

C6.3.7. <u>Tank Systems</u>. The following criteria apply to all storage tanks containing HW. See Chapter 19, "Underground Storage Tanks," for criteria dealing with underground storage tanks containing POLs and hazardous substances.

C6.3.7.1. <u>Application</u>. The requirements of this paragraph apply to HWSAs that use tank systems for storing or treating HW. Tank systems that are used to store or treat HW that contain no free liquids and are situated inside a building with an impermeable floor are exempted from the requirements in paragraph C6.3.7.4., Containment and Detection of Releases. Tank systems, including sumps that serve as part of a secondary containment system to collect or contain releases of HW, are exempted from the requirements in paragraph C6.3.7.4.

C6.3.7.2. <u>Assessment of the Integrity of an Existing Tank System</u>. For each existing tank system that does not have secondary containment meeting the requirements of paragraph C6.3.7.4., installations must determine annually whether the tank system is leaking or is fit for use. Installations must obtain, and keep on file at the HWSA, a written assessment of tank system integrity reviewed and certified by a competent authority.

C6.3.7.3. Design and Installation of New Tank Systems or System Components. Managers of HWSAs installing new tank systems or system components must obtain a written assessment, reviewed and certified by a competent authority attesting that the tank system has sufficient structural integrity and is acceptable for storing and treating HW. The assessment must show that the foundation, structural support, seams, connections, and pressure controls (if applicable) are adequately designed and that the tank system has sufficient structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to ensure that it will not collapse, rupture, or fail.

C6.3.7.4. <u>Containment and Detection of Releases</u>. To prevent the release of HW or hazardous constituents to the environment, secondary containment that meets the requirements of this paragraph must be:

C6.3.7.4.1. Provided for all new tank systems or components, prior to their being put into service;

C6.3.7.4.2. Provided for those existing tank systems when the tank system annual leak test detects leakage;

C6.3.7.4.3. Provided for tank systems that store or treat HW by 1 January 1999;

C6.3.7.4.4. Designed, installed, and operated to prevent any migration of wastes or accumulated liquid out of the system to the soil, groundwater, or surface water at any time during the use of the tank system; and capable of detecting and collecting releases and accumulated liquid until the collected material is removed; and

C6.3.7.4.5. Constructed to include one or more of the following: a liner external to the tank, a vault, or double-walled tank.

C6.3.7.5. General Operating Requirements

C6.3.7.5.1. Hazardous wastes or treatment reagents must not be placed in a tank system if they could cause the tank, its ancillary equipment, or the containment system to rupture, leak, corrode, or otherwise fail.

C6.3.7.5.2. The installation must inspect and log at least once each operating day:

C6.3.7.5.2.1. The above-ground portions of the tank system, if any, to detect corrosion or releases of waste;

C6.3.7.5.2.2. Data gathered from monitoring and leak detection equipment (e.g., pressure or temperature gauges, monitoring wells) to ensure that the tank system is being operated according to its design; and

C6.3.7.5.2.3. The construction materials and the area immediately surrounding the externally accessible portion of the tank system, including the secondary containment system (e.g., dikes) to detect erosion or signs of releases of HW (e.g., wet spots, dead vegetation).

C6.3.7.5.3. The installation must inspect cathodic protection systems to ensure that they are functioning properly. The proper operation of the cathodic protection system must be confirmed within 6 months after initial installation and annually thereafter. All sources of impressed current must be inspected and/or tested, as appropriate, or at least every other month. The installation manager must document the inspections in the operating record of the HWSA.

C6.3.7.6. <u>Response to Leaks or Spills and Disposition of Leaking or Unfit-For-Use</u> <u>Tank Systems</u>. A tank system or secondary containment system from which there has been a leak or spill, or that is unfit for use, must be removed from service immediately and repaired or closed. Installations must satisfy the following requirements:

C6.3.7.6.1. Cessation of use; prevention of flow or addition of wastes. The installation must immediately stop the flow of HW into the tank system or secondary containment system and inspect the system to determine the cause of the release.

C6.3.7.6.2. Containment of visible releases to the environment. The installation must immediately conduct an inspection of the release and, based on that inspection:

C6.3.7.6.2.1. Prevent further migration of the leak or spill to soil or surface water;

C6.3.7.6.2.2. Remove and properly dispose of any contaminated soil (see paragraph C6.3.11 for contaminated soil criteria) or surface water;

C6.3.7.6.2.3. Remove free product to the maximum extent possible; and

C6.3.7.6.2.4. Continue monitoring and mitigating for any additional fire and safety hazards posed by vapors or free products in subsurface structures.

C6.3.7.6.3. Make required notifications and reports.

C6.3.7.7. <u>Closure</u>. At closure of a tank system, the installation must remove or decontaminate HW residues, contaminated containment system components (liners, etc.), contaminated soil to the extent practicable (see paragraph C6.3.11 for contaminated soil criteria), and structures and equipment.

C6.3.8. Standards for the Management of Used Oil and Lead-Acid Batteries

C6.3.8.1. <u>Used Oil Burned for Energy Recovery</u>. Used oil fuel may be burned only in the following devices:

C6.3.8.1.1. Industrial furnaces.

C6.3.8.1.2. Boilers that are identified as follows:

C6.3.8.1.2.1. Industrial boilers located on the site of a facility engaged in a manufacturing process where substances are transformed into new products, including the component parts of products, by mechanical or chemical processes;

C6.3.8.1.2.2. Utility boilers used to produce electric power, steam, heated or cooled air, or other gases or fluids;

C6.3.8.1.2.3. Used oil-fired space heaters provided that:

C6.3.8.1.2.3.1. The heater burns only used oil that the installation

generates;

C6.3.8.1.2.3.2. The heater is designed to have a maximum capacity of not more than 0.5 million BTU per hour; and

C6.3.8.1.2.3.3. The combustion gases from the heater are properly vented to the ambient air.

C6.3.8.2. <u>Prohibitions on Dust Suppression or Road Treatment</u>. Used oil, HW, or used oil contaminated with any HW will not be used for dust suppression or road treatment.

C6.3.8.3. Lead-acid batteries that are to be recycled will be managed as industrial waste when transported off the installation. Lead-acid batteries that are not recycled will be managed as HW.

C6.3.9. Hazardous Waste Training

C6.3.9.1. <u>Application</u>. Personnel and their supervisors who are assigned duties involving actual or potential exposure to HW must successfully complete an appropriate training program prior to assuming those duties. Personnel assigned to such duty must work under direct supervision until they have completed appropriate training. Additional guidance is contained in DoDI 6050.05, "DoD Hazard Communication (HAZCOM) Program," August 15, 2006.

C6.3.9.2. <u>Refresher Training</u>. All personnel performing HW duties must successfully complete annual refresher HW training.

C6.3.9.3. <u>Training Contents and Requirements</u>. The training program must:

C6.3.9.3.1. Include sufficient information to enable personnel to perform their assigned duties and fully comply with pertinent HW requirements.

C6.3.9.3.2. Be conducted by qualified trainers who have completed an instructor training program in the subject, have comparable academic credentials, or experience.

C6.3.9.3.3. Be designed to ensure that facility personnel are able to respond effectively to emergencies by familiarizing them with emergency procedures, emergency equipment, and emergency systems.

C6.3.9.3.4. Address the following areas, in particular for personnel whose duties include HW handling and management:

C6.3.9.3.4.1. Emergency procedures (response to fire/explosion/spills; use of communications/alarm systems; body and equipment clean up);

C6.3.9.3.4.2. Drum/container handling/storage; safe use of HW equipment; proper sampling procedures;

C6.3.9.3.4.3. Employee Protection, to include Personal Protective Equipment (PPE), safety and health hazards, hazard communication, worker exposure; and

C6.3.9.3.4.4. Recordkeeping, security, inspections, contingency plans, storage requirements, and transportation requirements.

C6.3.9.4. <u>Documentation of Training</u>. Installations must document all HW training for each individual assigned duties involving actual or potential exposure to HW. Updated training records on personnel assigned duties involving actual or potential exposure to HW must be kept by the HWSA manager or the responsible installation office and retained for at least three years after termination of duty of these personnel.

C6.3.10. Hazardous Waste Disposal

C6.3.10.1. All DoD HW should normally be disposed of through DLA Disposition Services. A decision not to use DLA Disposition Services for HW disposal may be made in accordance with DoDD 4001.01, "Installation Support," January 10, 2008 to best accomplish the installation mission, but should be concurred with by the component chain of command to ensure that installation contracts and disposal criteria are at least as protective as criteria used by DLA Disposition Services.

C6.3.10.2. The DoD Components must ensure that wastes generated by DoD operations and considered hazardous under either U.S. law or Japanese law are not disposed of in Japan unless the disposal is conducted in accordance with the following:

C6.3.10.2.1. When HW cannot be disposed of in accordance with these JEGS within Japan, it will either be retrograded to the U.S. or, if permissible under international agreements, transferred to another country outside the U.S. where it can be disposed of in an environmentally sound manner and in compliance with FGS applicable to the country of disposal, if any exist. Transshipment of HW to a country other than the U.S. for disposal must be approved by, at a minimum, the DUSD(I&E).

C6.3.10.2.2. The determination of whether particular DoD-generated HW may be disposed of in Japan will be made by the DoD Lead Environmental Component, in coordination with the unified combatant commander, the Director of DLA, other relevant DoD Components, and the Chief of the U.S. Diplomatic Mission.

C6.3.10.3. <u>HW Disposal Procedures</u> (except contaminated soils). For criteria to dispose of contaminated soils, see paragraph C6.3.11.

C6.3.10.3.1. The determination of whether HW may be disposed of in Japan must include consideration of whether the means of treatment and/or containment technologies employed in the GoJ program, as enacted and enforced, effectively mitigate the hazards of such waste to human health and the environment, and must consider whether the GoJ program includes:

C6.3.10.3.1.1. An effective system for tracking the movement of HW to its ultimate destination.

C6.3.10.3.1.2. An effective system for granting authorization or permission to those engaged in the collection, transportation, storage, treatment, and disposal of HW.

C6.3.10.3.1.3. Appropriate standards and limitations on the methods that may be used to treat and dispose of HW.

C6.3.10.3.1.4. Standards designed to minimize the possibility of fire, explosion, or any unplanned release or migration of HW or its constituents to air, soil, surface, or groundwater.

C6.3.10.3.1.5. Specially controlled waste types shall not be comingled with other waste types during collection or transportation.

C6.3.10.3.2. The DoD Lead Environmental Component must also be satisfied, either through reliance on the GoJ regulatory system and/or provisions in the disposal contracts, that:

C6.3.10.3.2.1. Persons and facilities in the waste management process have demonstrated the appropriate level of training and reliability; and

C6.3.10.3.2.2. Effective inspections, monitoring, and recordkeeping will take place.

C6.3.10.3.3. Contracting for HW transportation, treatment and/or disposal: Contractors for transportation, treatment or disposal of HW must be licensed by the prefectural governor or a local government entity. DLA Disposition Services, or a HW generator who is using a non DLA Disposition Services contract, will inform contractors of HW characteristics and constituents prior to any transfer action. DLA Disposition Services, or the HW generator who is using a non-DLA Disposition Services contract, shall confirm the capabilities of the contractor, including storage capacity, timeliness of disposition, and storage conditions. Generators of HW are prohibited from contracting with a licensed transporter that requires the transporter to subcontract with a disposal facility. Rather, the HW generator must:

C6.3.10.3.3.1. Contract with a single contractor who is licensed to both transport HW and to dispose of HW; or

C6.3.10.3.3.2. Contract separately with:

C6.3.10.3.3.2.1. A licensed HW transportation contractor, and

C6.3.10.3.3.2.2. A licensed HW disposal facility.

C6.3.10.3.4. The standard for hazardous waste transfer from ship-to-shore or airplane-to-port is that no HW originating from any country other than Japan will be accepted for disposal in Japan, with the following exception:

C6.3.10.3.4.1. Units operating/training away from Okinawa and mainland Japan where there is no DLA Disposition Services to receive HW generated during the deployment are allowed to return HW to Okinawa/Japan where it can be properly disposed of in accordance with these JEGS.

C6.3.10.4. Japanese facilities that either store, treat, or dispose of DoD-generated waste must be evaluated and approved by the GoJ (or its duly designated representative) as being in compliance with their regulatory requirements. This evaluation and approval may consist of having a valid permit or GoJ (or its duly designated representative) equivalent for the HW that will be handled.

C6.3.10.5. Hazardous waste will be recycled or reused to the maximum extent practical. Safe and environmentally acceptable methods will be used to identify, store, prevent leakage, and dispose of HW, to minimize risks to health and the environment.

C6.3.10.6. Land Disposal Requirements.

C6.3.10.6.1. Hazardous waste shall not be land disposed on any DoD installation in Japan.

C6.3.10.6.2. For disposal in Japan, wastes exceeding the criteria in Table AP1.T6 may be accepted at isolated-type landfill units. Such landfill units must be completely isolated from the natural environment. However, waste acid, waste alkaline and infectious waste of special controlled type wastes shall not be land disposed.

C6.3.10.7. <u>Incinerator Standards</u>. This paragraph applies to incinerators that incinerate HW as well as boilers and industrial furnaces that burn HW for any recycling purposes.

C6.3.10.7.1. Incinerators used to dispose of HW must be licensed or permitted by the GoJ and approved by the DoD Lead Environmental Component. This license, permit, or approval must comply with the criteria listed in paragraph C6.3.10.7.2.

C6.3.10.7.2. A license, permit, or DoD Lead Environmental Component approval for incineration of HW must require the incinerator to be designed to include appropriate equipment as well as to be operated according to management practices (including proper combustion temperature, waste feed rate, combustion gas velocity, and other relevant criteria) to effectively destroy hazardous constituents and control harmful emissions. A permitting, licensing, or approval scheme that would require an incinerator to achieve the standards set forth in either paragraphs C6.3.10.7.2.1 or C6.3.10.7.2.2 is acceptable.

C6.3.10.7.2.1. The incinerator achieves a destruction and removal efficiency of 99.99% for the organic hazardous constituents that represent the greatest degree of difficulty of incineration in each waste or mixture of waste. The incinerator must minimize carbon monoxide in stack exhaust gas, minimize emission of particulate matter, and emit no more than 1.8 Kg (4 pounds) of hydrogen chloride per hour.

C6.3.10.7.2.2. The incinerator has demonstrated, as a condition for obtaining a license, permit, or DoD Lead Environmental Component approval, the ability to effectively destroy the organic hazardous constituents that represent the greatest degree of difficulty of incineration in each waste or mixture of waste to be burned. For example, this standard may be met by requiring the incinerator to conduct a trial burn, submit a waste feed analysis and detailed engineering description of the facility, and provide any other information that may be required to enable the GoJ and the DoD Lead Environmental Component to conclude that the incinerator will effectively destroy the principal organic hazardous constituents of each waste to be burned.

C6.3.10.8. <u>Treatment Technologies</u>. The following treatment technologies may be used to reduce the volume or hazardous characteristics of wastes. Wastes categorized as hazardous on the basis of section AP1.1 and which, after treatment as described herein, no longer exhibit any hazardous characteristic, may be disposed of as solid waste. Treatment residues of wastes categorized as hazardous under any other section of Appendix 1 will continue to be managed as HW under the criteria of this document, including those for disposal. The treatment technologies listed below are provided as baseline treatment/disposal technologies for use in determining suitability of Japanese disposal alternatives. These technologies should not be implemented without consultation with the DoD Lead Environmental Component.

C6.3.10.8.1. Organics

C6.3.10.8.1.1. Incineration in accordance with the requirements of paragraph C6.3.10.7.1.

C6.3.10.8.1.2. Fuel substitution where the units are operated such that destruction of hazardous constituents are at least as efficient, and hazardous emissions are no greater than those produced by incineration.

C6.3.10.8.1.3. <u>Biodegradation</u>. Wastes are degraded by microbial action. Such units will be operated under aerobic or anaerobic conditions so that the concentrations of a representative compound or indicator parameter (e.g., total organic carbon) has been substantially reduced in concentration. The level to which biodegradation must occur and the process time vary depending on the HW being biodegraded.

C6.3.10.8.1.4. <u>Recovery</u>. Wastes are treated to recover organic compounds. This will be done using, but not limited to, one or more of the following technologies: distillation; thin film evaporation; steam stripping; carbon adsorption; critical fluid extraction; liquid extraction; precipitation/crystallization, or phase separation techniques, such as decantation, filtration, and centrifugation when used in conjunction with one of the above techniques.

C6.3.10.8.1.5. <u>Chemical Degradation</u>. The wastes are chemically degraded in such a manner to destroy hazardous constituents and control harmful emissions.

C6.3.10.8.2. Heavy Metals

C6.3.10.8.2.1. <u>Stabilization or Fixation</u>. Wastes are treated in such a way that soluble heavy metals are fixed by oxidation/reduction, or by some other means that renders the metals immobile in a landfill environment.

C6.3.10.8.2.2. <u>Recovery</u>. Wastes are treated to recover the metal fraction by thermal processing, precipitation, exchange, carbon absorption, or other techniques that yield non-hazardous levels of heavy metals in the residuals.

C6.3.10.8.3. <u>Reactives</u>. Any treatment that changes the chemical or physical composition of a material so it no longer exhibits the characteristic for reactivity defined in Appendix 1.

C6.3.10.8.4. <u>Corrosives</u>. Corrosive wastes as defined in paragraph AP1.1.3 will be neutralized to a pH value between 6.0 and 9.0. Other acceptable treatments include recovery, incineration, chemical or electrolytic oxidation, chemical reduction, or stabilization.

C6.3.10.8.5. <u>Batteries</u>. Mercury, nickel-cadmium, lithium, and lead-acid batteries will be processed in accordance with paragraphs C6.3.10.8.2.1 or C6.3.10.8.2.2 to stabilize, fix or recover heavy metals, as appropriate, and in accordance with paragraph C6.3.10.8.4 to neutralize any corrosives before disposal.

C6.3.10.9. DoD generators of HW shall not treat HW at the point of generation except for elementary neutralization. This shall not preclude installations from treating HW in accord with paragraphs C6.3.10.7 and C6.3.10.8.

C6.3.11. Contaminated Soil Disposal

C6.3.11.1. Disposal of contaminated soil shall be accomplished using a contaminated soil treatment contractor that has been licensed by the appropriate GoJ authorities, and using the appropriate GoJ contaminated soil manifest.

C6.3.11.2. Parameters for handling contaminated soil:

C6.3.11.2.1. Contaminated soil shall not be mixed with other materials in the process of loading or transporting;

C6.3.11.2.2. Rocks, concrete waste, and other material shall not be separated from contaminated soil in the process of loading or transporting;

C6.3.11.2.3. Soil excavated from different locations shall be segregated based on the waste characteristics to prevent mixing. However, this requirement shall not apply when the contaminated soil is processed in a facility that is capable of treating soils with different waste characteristics;

C6.3.11.2.4. Contaminated soil shall not be unloaded except at an appropriate contaminated soil processing facility.

C6.3.11.3. Criteria for the proper characterization of contaminated soils for the purpose of disposal in Japan are provided in Table AP1.T7.

C6.3.11.4. There are 4 categories of Licensed Contaminated Soil Treatment Facilities:

- C6.3.11.4.1. Soil treatment facilities;
- C6.3.11.4.2. Cement manufacture facilities;
- C6.3.11.4.3. Landfill treatment facilities; and
- C6.3.11.4.4. Separating treatment facilities.

C6.3.11.5. These soil disposal criteria are **NOT** to be interpreted as soil quality standards or guidelines, and as such, shall **NOT** to be used for the purposes of compliance with DoDI 4715.08, "Remediation of Environmental Contamination outside the United States," November 1, 2013, as amended or updated.

C7. <u>CHAPTER 7</u>

SOLID WASTE

C7.1. <u>SCOPE</u>

This Chapter contains criteria to ensure that solid wastes are identified, classified, collected, transported, stored, treated, and disposed of safely and in a manner protective of human health and the environment. These criteria apply to residential and commercial solid waste generated at the installation level. These criteria are part of integrated waste management. Policies concerning the recycling portion of integrated waste management are found in DoDI 4715.4 ("Pollution Prevention," June 18, 1996) and service solid waste management manuals. The criteria in this Chapter deal with general solid waste. Criteria for specific types of solid waste that require special precautions are located in Chapter 6, "Hazardous Waste," Chapter 8, "Medical Waste Management," Chapter 11, "Pesticides," Chapter 14, "Polychlorinated Biphenyls," and Chapter 15, "Asbestos."

C7.2. <u>DEFINITIONS</u>

C7.2.1. <u>Bulky Waste</u>. Large items of solid waste such as household appliances, furniture, large auto parts, trees, branches, stumps, and other oversize wastes whose large size precludes or complicates their handling by normal solid wastes collection, processing, or disposal methods.

C7.2.2. <u>Carry-out Collection</u>. Collection of solid waste from a storage area proximate to the dwelling unit(s) or establishment where generated.

C7.2.3. <u>Collection</u>. The act of consolidating solid wastes (or materials that have been separated for the purpose of recycling) from various locations.

C7.2.4. <u>Collection Frequency</u>. The number of times collection is provided in a given period of time.

C7.2.5. <u>Commercial Solid Waste</u>. All types of solid wastes generated by stores, offices, restaurants, warehouses, and other non-manufacturing activities, excluding residential and industrial wastes.

C7.2.6. <u>Compactor Collection Vehicle</u>. A vehicle with an enclosed body containing mechanical devices that convey solid waste into the main compartment of the body and compress it into a smaller volume of greater density.

C7.2.7. <u>Construction and Demolition Waste</u>. The waste building materials, packaging, and rubble resulting from construction, remodeling, repair and demolition operations on pavements, houses, commercial buildings, and other structures.

C7.2.8. <u>Curb Collection</u>. Collection of solid waste placed adjacent to a street.

C7.2.9. <u>Cover Material</u>. Material that is used to cover compacted solid wastes in a land disposal site.

C7.2.10. <u>Daily Cover</u>. Soil that is spread and compacted or synthetic material that is placed on the top and side slopes of compacted solid waste at least at the end of each operating day to control vectors, fire, moisture, and erosion and to assure an aesthetic appearance. Mature compost or other natural material may be substituted for soil if soil is not reasonably available in the vicinity of the landfill and the substituted material will control vectors, fire, moisture, and erosion and will assure an aesthetic appearance.

C7.2.11. <u>Final Cover</u>. A layer of soil, mature compost, other natural material (or synthetic material with an equivalent minimum permeability) that is applied to the landfill after completion of a cell or trench, including a layer of material that will sustain native vegetation, if any.

C7.2.12. <u>Food Waste</u>. The organic residues generated by the handling, storage, sale, preparation, cooking, and serving of foods, commonly called garbage.

C7.2.13. Generation. The act or process of producing solid waste.

C7.2.14. Hazardous Waste. Refer to Chapter 6, "Hazardous Waste."

C7.2.15. <u>Industrial Solid Waste</u>. The solid waste generated by industrial processes and manufacturing.

C7.2.16. <u>Institutional Solid Waste</u>. Solid waste generated by educational, health care, correctional, and other institutional facilities.

C7.2.17. <u>Land Application Unit</u>. An area where wastes are applied onto or incorporated into the soil surface (excluding manure spreading operations) for agricultural purposes or for treatment or disposal.

C7.2.18. <u>Lower Explosive Limit</u>. The lowest percent by volume of a mixture of explosive gases in air that will propagate a flame at 25° C (77°F) and atmospheric pressure.

C7.2.19. <u>Municipal Solid Waste (MSW)</u>. Normally, residential and commercial solid waste generated within a community, not including yard waste. (see also definition in Chapter 2, "Air Emissions.")

C7.2.20. <u>Municipal Solid Waste Landfill (MSWLF) Unit</u>. A discrete area of land or an excavation, on or off an installation, that receives household waste, and that is not a land application unit, surface impoundment, injection well, or waste pile. An MSWLF unit also may receive other types of wastes, such as commercial solid waste and industrial waste.

C7.2.21. Open Burning. Burning of solid wastes in the open, such as in an open dump.

C7.2.22. <u>Open Dump</u>. A land disposal site at which solid wastes are disposed of in a manner that does not protect the environment, is susceptible to open burning, and is exposed to the elements, vectors, and scavengers.

C7.2.23. <u>Residential Solid Waste</u>. The wastes generated by normal household activities, including, but not limited to, food wastes, rubbish, ashes, and bulky wastes.

C7.2.24. <u>Rubbish</u>. A general term for solid waste, excluding food wastes and ashes, taken from residences, commercial establishments, and institutions.

C7.2.25. <u>Sanitary Landfill</u>. A land disposal site employing an engineered method of disposing of solid wastes on land in a manner that minimizes environmental hazards by spreading the solid wastes in thin layers, compacting the solid wastes to the smallest practical volume, and applying and compacting cover material at the end of each operating day.

C7.2.26. <u>Satellite Vehicle</u>. A small collection vehicle that transfers its load into a larger vehicle operating in conjunction with it.

C7.2.27. <u>Scavenging</u>. The uncontrolled and unauthorized removal of materials at any point in the solid waste management system.

C7.2.28. <u>Service Solid Waste Management Manual</u>. Naval Facility Manual of Operation (NAVFAC MO) 213, Air Force Regulation (AFR) 91-8, Army TM 5-634, or their successor documents.

C7.2.29. <u>Sludge</u>. The accumulated semi-liquid suspension of settled solids deposited from wastewaters or other fluids in tanks or basins. It does not include solids or dissolved material in domestic sewage or other significant pollutants in water resources, such as silt, dissolved or suspended solids in industrial wastewater effluent, dissolved materials in irrigation return flows, or other common water pollutants.

C7.2.30. <u>Solid Wastes</u>. Garbage, refuse, sludge, and other discarded materials, including solid, semi-solid, liquid, and contained gaseous materials resulting from industrial and commercial operations and from community activities. It does not include solids or dissolved material in domestic sewage or other significant pollutants in water resources, such as silt, dissolved or suspended solids in industrial wastewater effluent, dissolved materials in irrigation return flows, or other common water pollutants.

C7.2.31. <u>Solid Waste Storage Container</u>. A receptacle used for the temporary storage of solid waste while awaiting collection.

C7.2.32. <u>Stationary Compactor</u>. A powered machine that is designed to compact solid waste or recyclable materials and that remains stationary when in operation.

C7.2.33. <u>Storage</u>. The interim containment of solid waste after generation and prior to collection for ultimate recovery or disposal.

C7.2.34. <u>Street Wastes</u>. Material picked up by manual or mechanical sweepings of alleys, streets, and sidewalks; wastes from public waste receptacles; and material removed from catch basins.

C7.2.35. <u>Transfer Station</u>. A site at which solid wastes are concentrated for transport to a processing facility or land disposal site. A transfer station may be fixed or mobile.

C7.2.36. <u>Vector</u>. A carrier that is capable of transmitting a pathogen from one organism to another.

C7.2.37. <u>Yard Waste</u>. Grass and shrubbery clippings, tree limbs, leaves, and similar organic materials commonly generated in residential yard maintenance (also known as green waste).

C7.3. <u>CRITERIA</u>

C7.3.1. DoD solid wastes will be treated, stored, and disposed of in facilities that have been evaluated against paragraphs C7.3.13, C7.3.15, and C7.3.16. These evaluated facilities will be used to the maximum extent practical. Ocean dumping of industrial and/or municipal solid wastes is prohibited.

C7.3.2. Installations will cooperate with GoJ officials, to the extent possible, in the solid waste management planning process.

C7.3.2.1. <u>Contracting for transportation and/or disposal of industrial waste and</u> <u>municipal solid waste, and transportation for recycling</u>. Installations utilizing off-base disposal facilities will ensure that the transportation and disposal facility contractor(s) are properly licensed by the appropriate local or prefectural authorities for the industrial wastes being disposed. Installations are not required to inspect these facilities. Generators of industrial wastes are prohibited from contracting with a licensed transporter that requires the transporter to then subcontract with a licensed disposal facility. Therefore, the generator must either:

C7.3.2.1.1. Contract with a single contractor who is licensed to both transport AND dispose, or transport AND recycle, industrial and/or municipal solid waste, or

C7.3.2.1.2. Contract separately with a licensed transporter AND a licensed disposal or recycling facility.

C7.3.2.2. All industrial wastes leaving an installation and destined for disposal in a Japanese facility shall be accompanied by a serially-numbered manifest to ensure a complete audit trail from point of origin to ultimate disposal. A copy of this manifest will be maintained by the installation for a minimum of 5 years.

C7.3.2.3. When transferring municipal solid wastes/ industrial wastes containing Type I or Type II wastes (terms classified in Chapter 15, Asbestos), it shall not be mixed with other municipal solid wastes/ industrial wastes.

C7.3.3. Installations will develop and implement a solid waste management strategy to reduce solid waste disposal. This strategy could include recycling, composting, and waste minimization efforts.

C7.3.4. Land Disposal Requirements

C7.3.4.1. Land disposal of industrial waste shall be at a site which is enclosed and marked as a site for disposal of industrial waste.

C7.3.4.2. The following stable industrial waste items are acceptable for land disposal in a non-leachate type landfill unit provided visual evaluation demonstrates the waste is free of any other types of waste/contaminant prior to land disposal:

C7.3.4.2.1. Plastic (non-lead containing, free of organic matter and free of contaminants shown in Table AP1.T6);

C7.3.4.2.2. Rubber;

C7.3.4.2.3. Scrap metal (excluding electrode of lead acid, printed circuit board, lead pipe and plate);

C7.3.4.2.4. Glass (excluding shredded vehicle, cathode-ray tubes) and ceramic;

C7.3.4.2.5. Construction and demolition debris.

C7.3.4.3. Land disposal of industrial waste other than stable industrial waste items shall be in a leachate-controlled type landfill unit or in an isolated type landfill unit (see Chapter 6).

C7.3.5. All solid wastes or materials that have been separated for the purpose of recycling will be stored in such a manner that they do not constitute a fire, health or safety hazard or provide food or harborage for vectors, and will be contained or bundled to avoid spillage. All solid wastes or materials that have been separated for the purpose of recycling shall be segregated from waste containing asbestos.

C7.3.6. Storage of bulky wastes will include, but will not be limited to, removing all doors from large household appliances and covering the items to reduce both the problems of an attractive nuisance, and the accumulation of solid waste and water in and around the bulky items. Bulky wastes will be screened for the presence of ozone depleting substances as defined in Chapter 2, "Air Emissions," or hazardous constituents as defined in Chapter 6, "Hazardous Waste." Readily detachable or removable hazardous waste will be segregated and disposed of in accordance with Chapters 6, 14, and 15 of these JEGS.

C7.3.7. In the design of all buildings or other facilities that are constructed, modified, or leased after the effective date of these JEGS, there will be provisions for storage in accordance with these JEGS that will accommodate the volume of solid waste anticipated. Storage areas will be easily cleaned and maintained, and will allow for safe, efficient collection.

C7.3.8. Storage containers should be leakproof, waterproof, and vermin-proof, including sides, seams and bottoms, and be durable enough to withstand anticipated usage and environmental conditions without rusting, cracking, or deforming in a manner that would impair serviceability. Storage containers should have functional lids.

C7.3.9. Containers should be stored on a firm, level, well-drained surface that is large enough to accommodate all of the containers and that is maintained in a clean, spillage-free condition.

C7.3.10. Recycling programs will be instituted on DoD installations in accordance with the policies in DoDI 4715.4, "Pollution Prevention," June 18, 1996.

C7.3.11. Installations will not initiate new or expand existing waste landfill units without approval of the Combatant Commander with responsibility for the area where the landfill would be located, and only after justification that unique circumstances mandate a new unit.

C7.3.12. New DoD MSWLF units will be designed and operated in a manner that incorporates the following broad factors:

C7.3.12.1. Location restrictions with regard to airport safety (i.e., bird hazards), floodplains, wetlands, aquifers, seismic zones, and unstable areas;

C7.3.12.2. Procedures for excluding hazardous waste;

C7.3.12.3. Cover material criteria (e.g., daily cover), disease vector control, explosive gas control, air quality criteria (e.g., no open burning), access requirements, liquids restrictions, and record keeping requirements; and

C7.3.12.4. Inspection program.

C7.3.12.5. Liner and leachate collection system designed consistent with location to prevent groundwater contamination that would adversely affect human health. The standard for leachate water is found at Table C7.T2. If the leachate collection system connects to the treatment system (e.g., WWTP), the standards of Table C7.T2 shall not be applied. Frequency for leachate water item (excluding pH, BOD, COD, SS, and Nitrogen (for waters of Japan)) is once a year, for pH, BOD, COD, SS, and Nitrogen (waters of Japan) are once a month (in the absence of pollution, the frequency is once a year).

C7.3.12.6. A groundwater monitoring system unless the installation operating the landfill, after consultation with the DoD Lead Environmental Component, determines that there is no reasonable potential for migration of hazardous constituents from the MSWLF to the uppermost aquifer during the active life of the facility and the post-closure care period. The standard for groundwater is found at Table C7.T2. Prior to operating a new DoD MSWLF unit, the groundwater will be monitored against the standards in Table C7.T2. Monitoring for Electric Conductivity and Chloride ion is not necessary if the conditions are not conducive for them. The monitoring points should be at least 2 points which are suitable for judgment of any effect of leachate from the MSWLF on the quality of groundwater at the site. Frequency for groundwater monitoring is once a year, for Electric Conductivity and Chloride ion is not necessary if the standard to site. Frequency for groundwater monitoring is once a year, for Electric Conductivity and Chloride ion is not necessary if the site. Frequency for groundwater monitoring is once a year, for Electric Conductivity and Chloride ion is not necessary if the site. Frequency for groundwater monitoring is once a year, for Electric Conductivity and Chloride ion is once a month. When the

results of Electric Conductivity and Chloride ion deviate significantly from the baseline, groundwater shall be monitored.

C7.3.13. Installations operating MSWLF units will:

C7.3.13.1. Use standard sanitary landfill techniques of spreading and compacting solid wastes and placing daily cover over disposed solid waste at the end of each operating day.

C7.3.13.2. Establish criteria for unacceptable wastes based on site-specific factors such as hydrology, chemical and biological characteristics of the waste, available alternative disposal methods, environmental and health effects, and the safety of personnel.

C7.3.13.3. Implement a program to detect and prevent the disposal of hazardous wastes, infectious wastes, PCBs, and wastes determined unsuitable for the specific MSWLF unit.

C7.3.13.4. Investigate options for composting of MSW as an alternative to landfilling or treatment prior to landfilling.

C7.3.13.5. Prohibit open burning, except for infrequent burning of agricultural wastes, silvicultural wastes, land-clearing debris, diseased trees, or debris from emergency clean-up operations.

C7.3.13.6. Develop procedures for dealing with yard waste and construction debris that keeps it out of MSWLF units to the maximum extent possible (e.g., composting, recycling).

C7.3.13.7. Operate the MSWLF unit in a manner to protect the health and safety of personnel associated with the operation.

C7.3.13.8. Maintain conditions that are unfavorable for the harboring, feeding, and breeding of disease vectors.

C7.3.13.9. Ensure that methane gas generated by the MSWLF unit does not exceed 25% of the lower explosive limit for methane in structures on or near the MSWLF.

C7.3.13.10. Operate in an aesthetically acceptable manner.

C7.3.13.11. Operate in a manner to protect aquifers.

C7.3.13.12. Control public access to landfill facilities.

C7.3.13.13. Prohibit the disposal of sludge with a water content of \geq 85 percent, or bulk or non-containerized liquids.

C7.3.13.14. Maintain records on the preceding criteria.

C7.3.13.15. During closure and post-closure operations, installations will:

C7.3.13.15.1. Install a final cover system that is designed to minimize infiltration and erosion.

C7.3.13.15.2. Ensure that the infiltration layer is composed of a minimum of 46 cm (18 inches) of earthen material, geotextiles, or a combination thereof, that have a permeability less than or equal to the permeability of any bottom liner system or natural subsoil present, or a permeability no greater than 0.00001 cm/sec, whichever is less.

C7.3.13.15.3. Ensure that the final layer consists of a minimum of 21 cm (8 inches) of earthen material that is capable of sustaining native plant growth.

C7.3.13.15.4. If possible, revegetate the final cap with native plants that are compatible with the landfill design, including the liner.

C7.3.13.15.5. Prepare a written Closure Plan that includes, at a minimum, a description of the monitoring and maintenance activities required to ensure the integrity of the final cover, a description of the planned uses of the site during the post-closure period, plans for continuing (during the post-closure period) leachate collection (no exceedance in 2 years (leachate item once every 6 months, for pH, BOD, COD, SS, and Nitrogen (waters of Japan) once every 3 months), groundwater monitoring, and methane monitoring, and a survey plot showing the exact site location. The plan will be kept as part of the installation's permanent records. The post-closure period will be a minimum of 5 years.

C7.3.14. Open burning will not be the regular method of solid waste disposal. Where burning is the method, incinerators meeting air quality requirements of Chapter 2, "Air Emissions," will be used.

C7.3.15. A composting facility that is located on a DoD installation and that processes annually more than 5000 tons of sludge from a domestic wastewater treatment plant (see Chapter 4, "Wastewater") will comply with the following criteria:

C7.3.15.1. Operators must maintain a record of the characteristics of the waste composted, sewage sludge, and other materials, such as nutrient or bulking agents being composted, including the source and volume or weight of the material.

C7.3.15.1.1. Access to the facility must be controlled. All access points must be secured when the facility is not in operation.

C7.3.15.1.2. By-products, including residuals and materials that can be recycled, must be stored to prevent vector intrusion and aesthetic degradation. Materials that are not composted must be removed periodically.

C7.3.15.1.3. Run-off water that has come in contact with composted waste, materials stored for composting, or residual waste must be diverted to a leachate collection and treatment system.

C7.3.15.1.4. The temperature and retention time for the material being composted must be monitored and recorded.

C7.3.15.1.5. Periodic analysis of the compost must be completed for the following parameters: percentage of total solids, volatile solids as a percentage of total solids, pH, ammonia, nitrate, nitrogen, total phosphorous, cadmium, chromium, copper, lead, nickel, zinc, mercury, and PCBs.

C7.3.15.1.6. Compost must be produced by a process to further reduce pathogens. Two such acceptable methods are:

C7.3.15.1.6.1. Windrowing, which consists of an unconfined composting process involving periodic aeration and mixing to maintain aerobic conditions during the composting process; and

C7.3.15.1.6.2. The enclosed vessel method, which involves mechanical mixing of compost under controlled environmental conditions. The retention time in the vessel must be at least 72 hours with the temperature maintained at 55°C (131°F). A stabilization period of at least 7 days must follow the decomposition period.

C7.3.16. <u>Classification and Use of Compost from DoD Composting Facilities</u>. Compost produced at a composting facility that is located on a DoD installation and that processes annually more than 5000 tons of sludge from a domestic wastewater treatment plant (see Chapter 4, "Wastewater") must be classified as "Class A" or "Class B" based on the criteria below and, depending on this classification, shall be subject to the restrictions on certain uses.

C7.3.16.1. Class A compost must be stored until the compost is matured, i.e., 60% decomposition has been achieved. Class A compost may contain contaminant levels no greater than the levels indicated in Table C7.T1. The compost must be stabilized and contain no greater amounts of inert material than indicated.

C7.3.16.2. Class B compost consists of any compost generated that fails to meet Class A standards.

C7.3.16.3. Compost distribution and end use:

C7.3.16.3.1. Class A compost may be distributed for unrestricted use, including agricultural applications.

C7.3.16.3.2. Class B compost may not be distributed for agricultural applications.

Contaminant	Maximum Total Compost Concentration Standard (mg/kg of Compost)	Compost Leachate Standard (mg/L)
Carbon Tetrachloride		0.02
1,2-Dichloroethane		0.04
1,1-Dichloroethylene		1
Cis-1,2-Dichloroethylene		0.4
1,3-Dichloropropene		0.02
Dichloromethane		0.2
Tetrachloroethylene		0.1
1,1,1-Trichloroethane		3
1,1,2-Trichloroethane		0.06
Trichloroethylene		0.3
Benzene		0.1
Cadmium, and its compounds	5	0.3
Chromium compounds	500	1.5 (As Hexavalent Chromium)
Cyanide compounds		1
Total Mercury, and its compounds	2 (As Total Mercury)	0.005
Alkyl Mercury	2 (As Total Mercury)	ND
Selenium, and its compounds		0.3
Lead, and its compounds	100	0.3
Arsenic, and its compounds	50	0.3
Fluorine, and its compounds		
Boron, and its compounds		
Copper	500	
Zinc	1,000	
Nickel	100	
Simazine		0.03
Thiuram		0.06
Thiobencarb		0.2
PCB	1	0.003
Organic phosphorus compounds		1
1,4-Dioxane		0.5
Dioxins		3 ng/g

Table C7.T1. Class A Compost Criteria

Pollutant	Leachate Water (mg/L)	Groundwater (mg/L)
Cadmium, and its compounds	0.1	0.01
Cyanide	1	ND
Organic phosphorus compounds	1	
(parathion, methyl parathion, methyl	1	
demeton and EPN)	1	
Lead, and its compounds	0.1	0.01
Chromium (VI)	0.5	0.05
Arsenic, and its compounds	0.1	0.01
Total mercury	0.005	0.0005
Alkyl mercury compounds	ND	ND
PCBs	0.003	ND
Trichloroethylene	0.3	0.03
Tetrachloroethylene	0.5	0.03
Dichloromethane	0.1	0.01
Carbon tetrachloride	0.02	0.02
1,2-dichloroethane		
	0.04	0.004
1,1-dichloroethylene	1	
cis-1,2-dichloroethylene	0.4	0.04 (sum of cis-1,2-dichloroethylene
1.1.1.4	2	and trans-1,2-dichloroethylene)
1,1,1-trichloroethane	3	1
1,1,2-trichloroethane	0.06	0.006
1,3-dichloropropene	0.02	0.002
Thiuram	0.06	0.006
Simazine	0.03	0.003
Thiobencarb	0.2	0.02
Benzene	0.1	0.01
Selenium, and its compounds	0.1	0.01
1,4-Dioxane	0.5	0.05
Vinyl chloride monomer		0.002
Dioxin	10pg-TEQ/L	
Boron, and its compounds	50 (Non-Marine Area) /	
	230 (Marine Area)	
Fluorine, and its compounds	15	
Ammonia, ammonium compounds,	200(Sum of ammonia,-N X 0.4,	
nitrate and nitrite compounds	nitrate-N and nitrite-N)	
pH	Between 5.8 to 8.6 (rivers, lakes)/	
DOD	between 5.0 to 9.0 (ocean)	
BOD	60	
COD	90	
SS	60	
Mineral Oils (N-hexane extract)	5	
Animal/Vegetable Oils & Fats (N-	30	
hexane extracts)	_	
Phenols	5	
Copper	3	
Zinc	2	
Iron (Soluble)	10	
Manganese (Soluble)	10	
Chromium	2	
Total Coliform	3,000/mL	
Nitrogen Phosphorus	120(60 for daily)	
	16(8 for daily)	

Table C7.T2. Standards for Leachate Water/Groundwater

Chapter 7, Solid Waste

C8. <u>CHAPTER 8</u>

MEDICAL WASTE MANAGEMENT

C8.1. <u>SCOPE</u>

This Chapter contains criteria for the management of medical waste at medical, dental, research and development, and veterinary facilities generated in the diagnosis, treatment, or immunization of human beings or animals or in the production or testing of biologicals subject to certain exclusions. This waste also includes mixtures of medical waste and hazardous waste. It does not apply to what would otherwise be household waste.

C8.2. <u>DEFINITIONS</u>

C8.2.1. <u>Infectious Agent</u>. Any organism (such as a virus or bacterium) that is capable of being communicated by invasion and multiplication in body tissues and capable of causing disease or adverse health impacts in humans.

C8.2.2. <u>Infectious Hazardous Waste</u>. Mixtures of infectious medical waste and hazardous waste to include solid waste such as fluids from a parasitology laboratory.

C8.2.3. <u>Infectious Medical Waste</u>. Solid waste produced by medical and dental treatment facilities that is specially managed because it has the potential for causing disease in humans and may pose a risk to both individuals or community health if not managed properly, and that includes the following classes:

C8.2.3.1. Microbiology waste, including cultures and stocks of etiologic agents which, due to their species, type, virulence, or concentration, are known to cause disease in humans.

C8.2.3.2. Pathology waste, including human tissues and organs, amputated limbs or other body parts, fetuses, placentas, and similar tissues from surgery, delivery, or autopsy procedures. Animal carcasses, body parts, blood, and bedding from contaminated animals are also included.

C8.2.3.3. Human blood and blood products (including serum, plasma, and other blood components), items contaminated with liquid or semi-liquid blood or blood products and items saturated or dripping with blood or blood products, and items caked with blood or blood products, that are capable of releasing these materials during handling.

C8.2.3.4. Potentially infectious materials, including human body fluids such as semen, vaginal secretions, cerebrospinal fluid, pericardial fluid, pleural fluid, peritoneal fluid, amniotic fluid, saliva in dental procedures, any body fluid that is visibly contaminated with blood, and all body fluids in situations where it is difficult or impossible to differentiate between body fluids.

C8.2.3.5. Sharps, including hypodermic needles, syringes, biopsy needles, and other types of needles used to obtain tissue or fluid specimens, needles used to deliver intravenous

solutions, scalpel blades, Pasteur pipettes, specimen slides, cover slips, glass Petri plates, test tubes, ampoules, vials, and broken glass potentially contaminated with infectious waste.

C8.2.3.6. Infectious waste from isolation rooms, but only including those items that were contaminated or likely to have been contaminated with infectious agents or pathogens, including excretion exudates and discarded materials contaminated with blood.

C8.2.4. <u>Noninfectious Medical Waste</u>. Solid waste created that does not require special management because it has been determined to be incapable of causing disease in humans or which has been treated to render it noninfectious.

C8.2.5. Solid Waste. Any solid waste as defined in Chapter 7, "Solid Waste."

C8.2.6. <u>*Treatment*</u>. Any method, technique, or process designed to change the physical, chemical, or biological character or composition of any infectious hazardous or infectious waste so as to render such waste non-hazardous, or less hazardous; safer to transport, store, or dispose of; or amenable for recovery, amenable for storage, or reduced in volume. Treatment methods for infectious waste must eliminate infectious agents so that they no longer pose a hazard to persons who may be exposed.

C8.3. <u>CRITERIA</u>

C8.3.1. Infectious medical waste will be separated, if practical, from other solid waste at the point of origin.

C8.3.2. Mixtures of infectious medical wastes and hazardous wastes will be handled as infectious hazardous waste under DoD 4160.21-M, "Defense Materiel Disposition Manual," August 18, 1997, and are the responsibility of the generating DoD Component. Priority will be given to the hazard that presents the greatest risk. DLA Disposition Services have no responsibility for this type of property until it is rendered noninfectious as determined by the appropriate DoD medical authority.

C8.3.3. Solid waste that is classified as a hazardous waste in accordance with Appendix 1 will be managed in accordance with the criteria in Chapter 6, "Hazardous Waste."

C8.3.4. Mixtures of other solid waste and infectious medical waste will be handled as infectious medical waste.

C8.3.5. Radioactive medical waste will be managed in accordance with Service Directives.

C8.3.6. Infectious medical waste will be segregated, transported, and stored in sealable bags or receptacles a minimum of 0.0762 millimeters (3 mils) thick having such durability, puncture resistance, and burst strength as to prevent rupture or leaks during ordinary use.

C8.3.7. All bags or receptacles used to segregate, transport or store infectious medical waste will be clearly marked with the universal biohazard symbol and the word "BIOHAZARD" in English and Japanese (Figure C8.1), and will include markings that identifies the generator, date of generation, and the contents.

C8.3.8. Sharps will only be discarded into rigid receptacles. Needles will not be clipped, cut, bent, or recapped before disposal.

C8.3.9. Infectious medical waste will be transported and stored to minimize human exposure, and will not be placed in chutes or dumbwaiters.

C8.3.10. Infectious medical waste will not be compacted unless converted to noninfectious medical waste by treatment as described in paragraph C8.3.17. Containers holding sharps will not be compacted.

C8.3.11. All anatomical pathology waste (i.e., large body parts) must be placed in containers lined with plastic bags that comply with paragraph C8.3.6, and may only be disposed of in a landfill or by burial in a designated area after being treated for disposal by incineration or cremation.

C8.3.12. Blood, blood products, and other liquid infectious wastes will be handled as follows:

C8.3.12.1. Bulk blood and blood products may be decanted into a sewer system connection (sinks, drains, etc.), unless pre-treatment is required. If pre-treatment is required, the methods contained in Table C8.T1, "Treatment and Disposal Methods for Infectious Medical Waste," will be employed prior to discharge to the sewer system. The emptied containers will continue to be managed as infectious medical waste.

C8.3.12.2. Suction canister waste from operating rooms will either be decanted into a clinical sink or will be sealed into leak-proof containers and incinerated.

C8.3.13. All personnel handling infectious medical waste will wear appropriate protective apparel or equipment such as gloves, coveralls, masks, and goggles sufficient to prevent the risk of exposure to infectious agents or pathogens.

C8.3.14. If infectious medical waste cannot be treated on-site, it will be managed during storage as follows:

C8.3.14.1. Infectious medical waste will be maintained in a nonputrescent state, using refrigeration as necessary.

C8.3.14.2. Infectious medical waste with multiple hazards (i.e., infectious hazardous waste or infectious radioactive waste) will be segregated from the general infectious waste stream when additional or alternative treatment is required.

C8.3.15. Storage sites must be:

C8.3.15.1. Specifically designated by display of a sign, no less than 60 cm x 60 cm (24" x 24") in size and written in both English and Japanese:

C8.3.15.1.1. Prohibiting unauthorized entry;

C8.3.15.1.2. Prohibiting removal of containers without permission, and;

C8.3.15.1.3. Providing a point of contact (name, telephone number).

C8.3.15.2. Constructed to prevent entry of insects, rodents, and other pests;

C8.3.15.3. Prevent access by unauthorized personnel; and

C8.3.15.4. Marked on the outside with the universal biohazard symbol and the word "BIOHAZARD" in both English and Japanese (Figure C8.1).

C8.3.16. Bags and receptacles containing infectious medical waste must be placed into rigid or semi-rigid, leak-proof containers before being transported off-site.

C8.3.17. Infectious medical waste must be treated in accordance with Table C8.T1, "Treatment and Disposal Methods for Infectious Medical Waste," and the following before disposal:

C8.3.17.1. Sterilizers must maintain the temperature at 121°C (250°F) for at least 30 minutes at 1.034 bar (15 psi).

C8.3.17.2. The effectiveness of sterilizers must be checked at least weekly using *Bacillus stearo thermophilus* spore strips or an equivalent biological performance test.

C8.3.17.3. Incinerators used to treat medical waste must be designed and operated to maintain a minimum temperature and retention time sufficient to destroy all infectious agents and pathogens, and must meet applicable criteria in Chapter 2, "Air Emissions."

C8.3.17.4. Ash or residue from the incineration of infectious medical waste must be assessed for classification as hazardous waste in accordance with the criteria in Chapter 6, "Hazardous Waste." Ash that is determined to be hazardous waste must be managed in accordance with Chapter 6. All other residue will be disposed of in a landfill that complies with the criteria of Chapter 7, "Solid Waste."

C8.3.17.5. Chemical disinfection must be conducted using procedures and compounds approved by appropriate DoD medical authority for use on any pathogen or infectious agent suspected to be present in the waste.

C8.3.18. Installations will develop contingency plans for treatment or disposal of infectious medical waste should the primary means become inoperable.

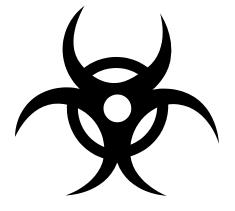
C8.3.19. Spills of infectious medical waste will be cleaned up as soon as possible in accordance with the following:

C8.3.19.1. Response personnel must comply with paragraph C8.3.13.

C8.3.19.2. Blood, body fluid, and other infectious fluid spills must be removed with an absorbent material that must then be managed as infectious medical waste.

C8.3.19.3. Surfaces contacted by infectious medical waste must be washed with soap and water and chemically decontaminated in accordance with paragraph C8.3.17.5.

C8.3.20. Installations will keep records of the following information concerning infectious medical waste for at least 5 years after the date of disposal:


C8.3.20.1. Type of waste;

C8.3.20.2. Amount of waste (volume or weight);

C8.3.20.3. Treatment, if any, including date of treatment; and

C8.3.20.4. Disposition, including date of disposition, and if the waste was transferred to Japanese facilities, and receipts acknowledging paragraphs C8.3.20.1. - C8.3.20.3. for each transfer, including the name, title, address and permit number of each consignee.

Figure C8.1. Universal biohazard symbol

Type of Medical Waste	Method of Treatment	Method of Disposal
Microbiological	¹ Steam sterilization	² Municipal solid waste landfill (MSWLF)
	Chemical disinfection	
	Incineration	
Pathological	³ Incineration	MSWLF
	³ Cremation	Burial
	⁴ Chemical Sterilization	⁵ Domestic wastewater treatment plant (DWTP)
	⁴ Steam sterilization	
Bulk blood &	⁶ Steam sterilization	DWTP
suction canister waste	Chemical disinfection	
	⁶ Incineration	MSWLF
Sharps in sharps containers	Steam sterilization	MSWLF
	Incineration	

Table C8.T1.	Treatment and Dispos	al Methods for Infectious	Medical Waste
--------------	----------------------	---------------------------	---------------

Notes:

1. Preferred method for cultures and stocks because they can be treated at point of generation

2. See Chapter 7, "Solid Waste," for criteria for solid waste landfills.

3. Anatomical pathology waste (i.e., large body parts) must be treated either by incineration or cremation prior to disposal.

4. This only applies to placentas, small organs and small body parts which may be steam sterilized or chemically sterilized, ground, and discharged to a domestic wastewater treatment plant.

5. See Chapter 4, "Wastewater," for criteria for domestic wastewater treatment plants.

6. Bulk blood or suction canister waste known to be infectious must be treated by incineration or steam sterilization before disposal.

C9. <u>CHAPTER 9</u>

PETROLEUM, OIL, AND LUBRICANTS

C9.1. <u>SCOPE</u>

This Chapter contains criteria to control and abate pollution resulting from the storage, transport and distribution of petroleum products. Criteria for underground storage tanks (UST) containing POL or hazardous material products are addressed in Chapter 19, "Underground Storage Tanks." POL spill prevention and response planning criteria are contained in Chapter 18, "Spill Prevention and Response Planning."

C9.2. <u>DEFINITIONS</u>

C9.2.1. <u>Aboveground Storage Container</u>. POL storage containers, exempt from UST criteria, that are normally placed on or above the surface of the ground. POL storage containers located above the floor and contained in vaults or basements, bunkered containers, and also partially buried containers are considered aboveground storage containers. For the purposes of this Chapter, this includes any mobile or fixed structure, tank, equipment, pipe, or pipeline (other than a vessel or a public vessel) used in oil well drilling operations, oil production, oil refining, oil storage, oil gathering, oil processing, oil transfer, and oil distribution. This also includes equipment in which oil is used as an operating fluid, but excludes equipment in which oil is used solely for motive power.

C9.2.2. <u>Below Ground Storage Container</u>. Completely buried POL storage containers, including deferred USTs, that are exempt from all criteria in Chapter 19, "Underground Storage Tanks." For purposes of this paragraph, ONLY below ground storage containers that are exempt from requirements of Chapter 19 are counted toward the aggregate thresholds in paragraph C9.2.7.2. below.

C9.2.3. <u>Loading/Unloading Racks</u>. Location where tanker trucks/rail cars are loaded and unloaded by pipes, pumps, and loading arms.

C9.2.4. <u>Loading/Unloading Areas</u>. Any location where POL is authorized to be loaded or unloaded to or from a POL storage container.

C9.2.5. <u>Pipeline Facility</u>. Includes new and existing pipes, pipeline rights of way, auxiliary equipment (e.g., valves and manifolds), and buildings or other facilities used in the transportation of POL.

C9.2.6. <u>POL</u>. Refined petroleum, oils, and lubricants, including, but not limited to, petroleum, fuel, lubricant oils, synthetic oils, mineral oils, animal fats, vegetable oil, sludge, and POL mixed with wastes other than dredged spoil.

C9.2.7. <u>POL Facility</u>. An installation with either:

C9.2.7.1. An aggregate aboveground storage container capacity (excluding below ground storage containers) of 5,000 liters (1,320 gallons) or greater; or

C9.2.7.2. An aggregate below ground storage container capacity of 159,091 liters (42,000 gallons) or greater; or

C9.2.7.3. A pipeline facility as identified in paragraph C9.2.5.

C9.2.8. <u>POL Storage Container</u>. POL containers with capacities GREATER than 55 gallons (mobile/portable and fixed; and above and below ground storage containers). USTs required to meet all requirements of Chapter 19 are EXCLUDED from the definition of POL storage containers.

C9.3. <u>CRITERIA</u>

C9.3.1. <u>Applicability</u>. The below criteria apply only at POL Facilities as defined in paragraph C9.2.7.

C9.3.2. General POL Storage Container Criteria

C9.3.2.1. <u>Inspection and Testing</u>. Inspection and testing shall be conducted on all POL storage containers in accordance with recognized industry standards.

C9.3.2.2. <u>Secondary Containment</u>. POL storage containers must be provided with a secondary means of containment (e.g., dike) capable of holding the entire contents of the largest single tank plus sufficient freeboard to allow for precipitation and expansion of product. Alternatively, POL storage containers that are equipped with adequate technical spill and leak prevention options (such as overfill alarms and flow shutoff or restrictor devices) may provide secondary containment by use of a double wall container. Below ground storage containers may meet this criterion by use of a leak barrier with a leak detection pipe and basin. A licensed technical authority may waive this secondary containment criteria for below ground storage containers.

C9.3.2.3. <u>Permeability</u>. Permeability for containment areas will be a maximum of 10^{-7} cm/sec.

C9.3.2.4. <u>Containment Area Drainage</u>. Drainage of storm water from containment areas will be controlled by a valve that is locked closed when not in active use. Storm water will be inspected for petroleum sheen before being drained from containment areas. If a petroleum sheen is present it must be collected with sorbent materials prior to drainage, or treated using an oil-water separator. Disposal of sorbent material exhibiting the hazardous characteristics in Appendix 1 will be in accordance with Chapter 6, "Hazardous Waste."

C9.3.2.5. <u>Valves and Piping</u>. All aboveground valves, piping, and appurtenances associated with POL storage containers shall be periodically inspected in accordance with recognized industry standards.

C9.3.3. Additional POL Storage Container Criteria

C9.3.3.1. <u>Testing</u>. Buried piping associated with POL storage containers shall be tested for integrity and leaks at the time of installation, modification, construction, relocation, or replacement. New buried piping must be protected against corrosion in accordance with recognized industry standards.

C9.3.3.2. <u>Storage Container Design</u>. POL storage containers shall be designed or modernized in accordance with good engineering practice to prevent unintentional discharges by use of overflow prevention devices.

C9.3.3.3. <u>Completely and Partially Buried Metallic POL Storage Containers</u>. These must be protected from corrosion in accordance with recognized industry standards.

C9.3.4. <u>Storage Container Wastes</u>. POL container cleaning wastes frequently have hazardous characteristics (as defined in Appendix 1) and must be handled and disposed of in accordance with requirements of Chapter 6, "Hazardous Waste." POL container waste and handling procedures include:

C9.3.4.1. POL container cleaning wastes (sludge and washwaters) must be disposed of in accordance with the criteria of Chapter 6, unless sampling and testing confirms the waste does not exhibit hazardous waste characteristics.

C9.3.4.2. POL container bottom waters, which are periodically drained, must be collected and disposed of in accordance with Chapter 6, unless sampling and testing determine that the waste does not exhibit hazardous waste characteristics.

C9.3.5. General Transport and Distribution Criteria

C9.3.5.1. Loading/Unloading Racks and Areas

C9.3.5.1.1. <u>Secondary Containment</u>. Loading/unloading racks shall be designed to handle discharges of at least the maximum capacity of any single compartment of a rail car or tank truck loaded or unloaded at the loading/unloading rack.

C9.3.5.1.2. <u>Departing Vehicle Warning Systems</u>. Provide an interlocked warning light or physical barrier system, warning signs, wheel chocks, or vehicle break interlock system at loading/unloading racks to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines.

C9.3.5.1.3. <u>Vehicle Inspections</u>. Prior to filling and prior to departure of any tank car or tank truck, closely inspect for discharges from the lowermost drain and all outlets of such vehicles, and if necessary, ensure that they are tightened, adjusted, or replaced to prevent liquid discharge while in transit.

C9.3.5.1.4. <u>Loading/Unloading Areas</u>. Provide appropriate containment and/or diversionary structures (dikes, berms, culverts, spill diversion ponds, etc.) or equipment (sorbent materials, wiers, booms, other barriers, etc.) at loading/unloading areas to prevent a discharge of

POL, which reasonably could be expected to cause a sheen on waters of Japan defined in Chapter 4, "Wastewater."

C9.3.5.2. POL Pipeline Facilities

C9.3.5.2.1. <u>Provisions for Testing and Maintenance</u>. All pipeline facilities carrying POL must be tested and maintained in accordance with recognized industry standards, including:

C9.3.5.2.1.1. Each pipeline operator handling POL will prepare and follow a procedural manual for operations, maintenance, and emergencies.

C9.3.5.2.1.2. Each new pipeline facility and each facility in which pipe has been replaced or relocated must be tested in accordance with recognized industry standards, without leakage before being placed in service.

C9.3.5.2.1.3. All new POL pipeline facilities must be designed and constructed to meet recognized industry construction standards.

C9.3.6. <u>Personnel Training</u>. At a minimum, all personnel handling POL shall be trained annually in the operation and maintenance of equipment to prevent discharges; discharge procedure protocols; general facility operations; and the applicable contents of the facility Spill Plan.

C10. <u>CHAPTER 10</u>

RESERVED

C11. <u>CHAPTER 11</u>

PESTICIDES

C11.1. <u>SCOPE</u>

This Chapter contains criteria regulating the use, storage, and handling of pesticides, but does not address the use of these materials by individuals acting in an unofficial capacity in a residence or garden. The disposal of pesticides is covered in Chapter 6, "Hazardous Waste," and Chapter 7, "Solid Waste."

C11.2. DEFINITIONS

C11.2.1. <u>Certified Pesticide Applicators</u>. Personnel who apply pesticides or supervise the use of pesticides and have been formally certified in accordance with DoD 4150.07-M, "DoD Pest Management Training and Certification Program," dated May 23, 2013 (which accepts Japanese certification in appropriate circumstances).

C11.2.2. <u>Integrated Pest Management (IPM)</u>. A planned program incorporating continuous monitoring, education, record-keeping, and communication to prevent pests and disease vectors from causing unacceptable damage to operations, people, property, materiel, or the environment. IPM uses targeted, sustainable (effective, economical, environmentally sound) methods, including education, habitat modification, biological control, genetic control, cultural control, mechanical control, physical control, regulatory control and, where necessary, the judicious use of least-hazardous pesticides.

C11.2.3. <u>Pests</u>. Arthropods, birds, rodents, nematodes, fungi, bacteria, viruses, algae, snails, marine borers, snakes, weeds, undesirable vegetation, and other organisms (except for microorganisms that cause human or animal disease) that adversely affect the well being of humans or animals; attack real property, supplies, equipment, or vegetation; or are otherwise undesirable.

C11.2.4. <u>Pest Management Consultant</u>. Professional DoD pest management personnel located at component headquarters, field operating agencies, major commands, facilities engineering field divisions or activities, or area support activities who provide technical and management guidance for the conduct of installation pest management operations. Some pest management consultants may be designated by their component as certifying officials.

C11.2.5. <u>Pesticide</u>. Any substance or mixture of substances, including biological control agents, that may prevent, destroy, repel, or mitigate pests.

C11.2.6. <u>Pesticide Waste</u>. Materials subject to pesticide disposal restrictions including:

C11.2.6.1. Any pesticide that has been identified by the pest management consultant as cancelled under U.S. or the appropriate GoJ authorities;

C11.2.6.2. Any pesticide that does not meet specifications, is contaminated, has been improperly mixed, or otherwise unusable, whether concentrated or diluted;

C11.2.6.3. Any material used to clean up a pesticide spill; or

C11.2.6.4. Any containers, equipment, or material (including wastewater) contaminated with pesticides. Empty pesticide containers that have been triple rinsed are NOT considered hazardous waste, and can be disposed of as normal solid waste.

C11.2.7. <u>Registered Pesticide</u>. A pesticide registered and approved for sale or use within the U.S. or Japan.

C11.3. CRITERIA

C11.3.1. All pesticide applications, excluding arthropod skin and clothing repellents, will be recorded using DD Form 1532-1, "Pest Management Maintenance Report," or a computer generated equivalent. These records will be archived for permanent retention in accordance with specific service procedures. The Pest Management Maintenance Report has been assigned Report Control Symbol DD-A&T(A&AR)1080 in accordance with DoD 8910.1-M, "DoD Procedures for Management of Information Requirements," June 30, 1998.

C11.3.2. Installations will implement and maintain a current pest management plan that includes measures for all installation activities and satellite sites that perform pest control. This written plan will include IPM procedures for preventing pest problems in order to minimize the use of pesticides. The plan must be reviewed and approved in writing by the appropriate pest management consultant.

C11.3.3. All pesticide applications will be made by certified pesticide applicators, with the following exceptions:

C11.3.3.1. New DoD employees who are not certified may apply pesticides during an apprenticeship period not to exceed 2 years and only under the supervision of a certified pesticide applicator;

C11.3.3.2. Arthropod skin and clothing repellents; and

C11.3.3.3. Pesticides applied as part of an installation's self help program.

C11.3.4. All pesticide applicators will be included in a medical surveillance program to monitor the health and safety of persons occupationally exposed to pesticides.

C11.3.5. All pesticide applicators will be provided with personal protective equipment appropriate for the work they perform and the types of pesticides to which they may be exposed.

C11.3.6. Installations will only use registered pesticides approved in writing by the appropriate pest management consultant. This may be documented as part of the approval of the pest management plan.

C11.3.7. Pesticides will be included in the installation spill contingency plan. (see Chapter 18, "Spill Prevention and Response Planning.")

C11.3.8. Pest management facilities, including mixing and storage areas, will comply with Military Handbook AFPMB TG-17 ("Design of Pest Management Facilities," August 2009).

C11.3.9. All pesticide applications will be in accordance with guidance given on the pesticide label. Labels will bear the appropriate use instructions and precautionary message based on the toxicity category of the pesticide ("danger," "warning," or "caution"). If local nationals will be using the pesticides, the precautionary messages and use instructions will be in English and in Japanese.

C11.3.10. MSDSs/SDSs and labels for all pesticides will be available at the storage and holding facility.

C11.3.11. Pesticide storage areas will contain a readily visible current inventory of all items in storage, including items awaiting disposal, and should be regularly inspected and secured to prevent unauthorized access.

C11.3.12. Unless otherwise restricted or canceled, pesticides in excess of installation needs will be redistributed within the supply system or disposed of in accordance with procedures outlined below:

C11.3.12.1. The generator of pesticide wastes will determine whether or not the waste is hazardous, in accordance with Chapter 6 of these JEGS.

C11.3.12.2. Pesticide waste determined to be hazardous waste will be disposed of in accordance with the criteria for hazardous waste disposal in Chapter 6 of these JEGS.

C11.3.12.3. Pesticide waste that is determined not to be a hazardous waste will be disposed of in accordance with the label instructions, through DLA Disposition Services, as a solid waste. Pesticide containers shall be crushed or the top and bottom portions shall be removed to prevent reuse.

C12. <u>CHAPTER 12</u>

HISTORIC AND CULTURAL RESOURCES

C12.1. <u>SCOPE</u>

This Chapter contains criteria for required plans and programs needed to ensure proper protection and management of historic and cultural resources, such as properties on the World Heritage List or the GoJ list equivalent to the U.S. National Register of Historic Places.

C12.2. DEFINITIONS

C12.2.1. <u>Adverse Effect</u>. Changes that diminish the quality or significant value of historic or cultural resources.

C12.2.2. <u>Archeological Resource</u>. Any material remains of prehistoric or historic human life or activities. Such resources include, but are not limited to: pottery, basketry, bottles, weapons, weapon projectiles, tools, structures or portions of structures, pit houses, rock paintings, rock carvings, intaglios, graves, human skeletal remains, or any portion of any of the foregoing items.

C12.2.3. <u>Cultural Mitigation</u>. Specific steps designed to lessen the adverse effects of a DoD action on a historical or cultural resource, including:

C12.2.3.1. Limiting the magnitude of the action;

C12.2.3.2. Relocating the action in whole or in part;

C12.2.3.3. Repairing, rehabilitating, or restoring the affected resources, affected property; and

C12.2.3.4. Recovering and recording data from cultural properties that may be destroyed or substantially altered.

C12.2.4. <u>Historic and Cultural Resources Program</u>. Identification, evaluation, documentation, curation, acquisition, protection, rehabilitation, restoration, management, stabilization, maintenance, recording, and reconstruction of historic and cultural resources and any combination of the foregoing.

C12.2.5. <u>Historic or Cultural Resources</u>. Physical remains of any prehistoric or historic district, site, building, structure, or object significant in world, national, or local history, architecture, archeology, engineering, or culture. The term includes artifacts, archeological resources, records, and material remains that are related to such a district, site, building, structure, or object, and also includes natural resources (plants, animals, landscape features, etc.) that may be considered important as a part of a country's traditional culture and history. The term also includes any property listed on the World Heritage List or the GoJ equivalent of the National

Register of Historic Places. GoJ lists of properties should be evaluated to determine if they are equivalent with the National Register of Historic Places prior to application.

C12.2.6. <u>Inventory</u>. To determine the location of historic and cultural resources that may have world, national, or local significance.

C12.2.7. <u>Material Remains</u>. Physical evidence of human habitation, occupation, use, or activity, including the site, loci, or context in which such evidence is situated including:

C12.2.7.1. Surface or subsurface structures;

C12.2.7.2. Surface or subsurface artifact concentrations or scatters;

C12.2.7.3. Whole or fragmentary tools, implements, containers, weapons, clothing, and ornaments;

C12.2.7.4. By-products, waste products, or debris resulting from manufacture or use;

C12.2.7.5. Organic waste;

C12.2.7.6. Human remains;

C12.2.7.7. Rock carvings, rock paintings, and intaglios;

C12.2.7.8. Rock shelters and caves;

C12.2.7.9. All portions of shipwrecks; or

C12.2.7.10. Any portion or piece of any of the foregoing.

C12.2.8. <u>Preservation</u>. The act or process of applying measures to sustain the existing form, integrity, and material of a building or structure, and the existing form and vegetative cover of a site. It may include initial stabilization work where necessary, as well as ongoing maintenance of the historic building materials.

C12.2.9. <u>Protection</u>. The act or process of applying measures designed to affect the physical condition of a property by safeguarding it from deterioration, loss, attack, or alteration, or to cover or shield the property from danger or injury. In the case of buildings and structures, such treatment is generally temporary and anticipates future historic preservation treatment; in the case of archaeological sites, the protective measure may be temporary or permanent.

C12.3. CRITERIA

C12.3.1. Installation commanders shall take into account the effect of any action on any property listed on the World Heritage List or on the GoJ equivalent of the National Register of Historic Places for purposes of avoiding or mitigating any adverse effects.

C12.3.2. Installations shall have access to the World Heritage List and the GoJ equivalent of the National Register of Historic Places.

C12.3.3. Installation commanders shall ensure that personnel performing historic or cultural resource functions have the requisite expertise in world, national, and local history and culture. This may be in-house, contract, or through consultation with another agency. Government personnel directing such functions must have training in historic or cultural resources management.

C12.3.4. Installations shall, after coordination with the appropriate GoJ authorities, prepare, maintain, and implement a cultural resources management plan that contains information needed to make appropriate decisions about cultural and historic resources identified on the installation inventory, and for mitigation of any adverse effects.

C12.3.5. Installations shall, after coordination with the appropriate GoJ authorities, and if financially and otherwise practical:

C12.3.5.1. Inventory historic and cultural resources in areas under DoD control. An inventory shall be developed from a records search and visual survey.

C12.3.5.2. Establish measures sufficient to protect known historic or cultural resources until appropriate mitigation or preservation can be completed.

C12.3.5.3. Establish measures sufficient to protect known archeological resources until appropriate mitigation or preservation can be completed.

C12.3.6. Installation commanders shall establish measures to prevent DoD personnel from disturbing or removing historic or cultural resources without permission of the GoJ.

C12.3.7. Installation commanders shall ensure that planning for major actions includes consideration of possible effects on historic or cultural resources.

C12.3.8. If potential historic or cultural resources not previously inventoried are discovered in the course of a DoD action, the newly discovered items will be preserved and protected pending a decision on final disposition by the installation commander. The decision on final disposition will be made by the installation commander after coordination with the appropriate GoJ authorities. A general system for the treatment of human remains is provided in Table C12.T1.

Recent Burial (Post-WWII)	Historic Burial (WWII or before)	Unknown
Remains exhumed, forensic studies performed	Remains documented, recorded & left <i>in situ</i>	Remains documented, recorded & left <i>in situ</i>
		Installation may consider requests for further investigations (such as universities, anthropologists or cultural resources organization as designated by GoJ) to determine era of origin of human remains
	Remains recorded, exhumed to determine ethnicity, age, sex, & number of individuals	Remains claimed by owner

Table C12.T1. General System for Treatment of Human Remains in Japan.

C13. <u>CHAPTER 13</u>

NATURAL RESOURCES AND ENDANGERED SPECIES

C13.1. <u>SCOPE</u>

This Chapter establishes criteria for required plans and programs needed to ensure proper protection, enhancement, and management of natural resources and any species (flora or fauna) declared endangered or threatened by either the U.S. or the appropriate GoJ authorities.

C13.2. DEFINITIONS

C13.2.1. <u>Adverse Effect</u>. Changes that diminish the quality or significant value of natural resources. For biological resources, adverse effects include significant decreases in overall population diversity, abundance, and fitness.'

C13.2.2. <u>Conservation</u>. Planned management, use, and protection; continued benefit for present and future generations; and prevention of exploitation, destruction, and/or neglect of natural resources.

C13.2.3. <u>GoJ-Protected Species</u>. Any species of flora or fauna listed or designated by the GoJ, because continued existence of the species is, or is likely to be, threatened, and is therefore subject to special protection from destruction or adverse modification of associated habitat.

C13.2.4. <u>Invasive Species</u>. Living individuals (including eggs, seeds, and their organs) existing outside their original habitats as a result of introduction into Japan and that are recognized to cause adverse effects on ecosystems, human safety, agriculture, forestry and/or fisheries because of their differences with native Japanese organisms, and listed in Table C13.T3, "Invasive Species Prohibited from Introduction in Japan".

C13.2.5. <u>Management Plan</u>. A document describing natural resources, their quantity, condition, and actions to ensure their conservation and good stewardship.

C13.2.6. <u>Natural Resources</u>. All living and inanimate materials supplied by nature that are of aesthetic, ecological, educational, historical, recreational, scientific, or other value.

C13.2.7. <u>Natural Resources Management</u>. Actions taken that combine science, economics, and policy, to study, manage, and restore natural resources to strike a balance with the needs of people and the ability of the ecosystem to support soil, water, forest, fish, wildlife, and coastal resources.

C13.2.8. <u>Significant Land or Water Area</u>. Land or water area that is normally 500 or more acres outside the cantonment area; areas of smaller size are included if they have natural resources that are especially vulnerable to disturbance.

C13.2.9. <u>Threatened and Endangered Species</u>. Any species of fauna or flora, listed in Tables C13.T1, "Threatened and Endangered Species of Wild Fauna & Flora in Japan" and C13.T2, "Natural Monument Species in Japan," respectively.

C13.2.10. <u>Uncategorized Invasive Species</u>. Individual alien species (including eggs and seeds) suspected to have a likelihood of causing adverse effects on ecosystems because of their differences with native Japanese organisms, and listed as "Uncategorized" in Table C13.T3, "Invasive Species Prohibited from Introduction in Japan".

C13.3. CRITERIA

C13.3.1. Installations that have land and water areas shall take reasonable steps to protect and enhance known endangered or threatened species and GoJ-protected species and their habitat.

C13.3.2. Installations shall maintain, or have access to, Table C13.T1, "Threatened and Endangered Species of Wild Fauna & Flora in Japan" and Table C13.T2, "Natural Monument Species in Japan".

C13.3.3. Installations with significant land or water areas shall, after coordination with the appropriate GoJ authorities, develop natural resources management plans.

C13.3.4. Installations with natural resources management plans shall, after coordination with the appropriate GoJ authorities, and if financially and otherwise practical, and in such a way that there is no net loss of mission capability:

C13.3.4.1. Conduct a survey to determine the presence of any threatened or endangered species or GoJ-protected species, or support GoJ surveys.

C13.3.4.2. Implement natural resources management plans.

C13.3.5. The U.S. Ambassador will be notified of the discovery of any endangered or threatened species and GoJ-protected species not previously known to be present on the installation.

C13.3.6. Installations shall maintain grounds to meet designated mission use and ensure harmony with the natural landscape and/or the adjacent GoJ facilities where practical.

C13.3.7. Installations shall ensure that personnel performing natural resource functions have the requisite expertise in the management of their discipline (i.e., endangered or threatened species, GoJ-protected species, wetlands, soil stabilization). This may be in-house, contract, or through consultation with another agency. Government personnel directing such functions must have training in natural resources management.

C13.3.8. Installations shall place emphasis on the maintenance and protection of habitats favorable to the reproduction and survival of indigenous flora and fauna. The invasive animal and plant species (e.g., non-indigenous) listed in Table C13.T3, "Invasive Species prohibited from introduction in Japan," shall not be raised, planted, stored, transferred or otherwise possessed on DoD installations in Japan without permission from the appropriate GoJ authorities.

Uncategorized invasive species listed in Table C13.T3. "Invasive Species Prohibited from Introduction in Japan" shall not be imported into Japan without permission from the appropriate GOJ authorities. If invasive species or uncategorized invasive species are discovered on a DoD installation, installation commanders shall immediately notify the DoD Lead Environmental Component and implement management actions to prevent the spread of these species. To the maximum extent practicable, installation commanders shall, upon request, cooperate with GoJ efforts to eradicate invasive species present on DoD installations in Japan.

C13.3.9. Land and vegetative management activities will be consistent with current conservation and land use principles (e.g., ecosystem protection, biodiversity conservation, and mission-integrated land use).

C13.3.10. Installations shall utilize protective vegetative cover or other standard soil erosion/sediment control practices to control dust, stabilize sites, and avoid silting of streams.

Iononogo Nomo	Scientific Norma	English Nome
Japanese Name	Scientific Name Birds	English Name
Ootaka	Accipiter gentilis fujiyamae	Goshawk, Japanese
Hahajima meguro	Apalopteron familiare hahasima	Honeyeater, Bonin Islands
Inuwashi	Aquila chrysaetos japonica	Eagle, Japanese Golden
Katashirowashi	Aquila chrysaelos japonica Aquila heliaca	Eagle, Eastern Imperial
Shijyukaragan	Branta canadensis leucopareia	Goose, Canada
Washimimizuku	Bubo bubo	Owl, Eurasian Eagle
Ogasawara nosuri	Buteo buteo toyoshimai	Buzzard (Ogasawara Islands subspecies) Greenfinch, Oriental
Ogasawara kawarahiwa	Carduelis sinica kittlitzi	,
Kin(n)bato	Chalcophaps indica yamashinai	Dove, Emerald
Kounotori	Ciconia boyciana (=ciconia b.)	Stork, Oriental White
Akagashirakarasubato	Columba janthina nitens	Pigeon, Japanese Wood
Yonakuni karasubato	Columba janthina stejnegeri	Pigeon, Stejneger's Wood
Ohsutonooakagera	Dendrocopos leucotos owstoni	Woodpecker, White-Backed
Akahige	Erithacus komadori komadori	Robin, Ryukyu
Hontouakahige	Erithacus komadori namiyei	Robin, Stejneger's Ryukyu
Usuakahige	Erithacus komadori subrufus	Robin, Yaeyama Ryukyu
Shimahayabusa	Falco peregrinus fruitii	Falcon, Volcano Islands Pergrine
Hayabusa	Falco peregrinus japonensis	Falcon, Pergrine
Oohayabusa	Falco peregrinus pealei	Falcon, Peale's
Tancho	Grus japonensis	Crane, Japanese Red-Crowned
Sodegurotsuru	Grus leucogernaus	Crane, Siberian
Nabe-zuru	Grus monacha	Crane, Hooded
Ojirowashi	Haliaeetus albicilla	Eagle, White-Tailed Sea
Oowashi	Haliaeetus pelagicus pelagicus	Eagle, Steller's Sea
Shimafukurou	Ketupa blakistoni blakistoni	Owl, Blakiston's Fish
Raicho	Lagopus mutus japonicus	Ptarmigan, Japanese Rock
Etopirika	Lunda cirrhata	Puffin, Tufted
Oosekka	Megalurus pryeri pryeri	Warbler, Japanese Marsh (Swamp)
Kouraiaisa	Mergus squamatus	Merganser, Scaly-sided
Toki	Nippoia nippon	Ibis, Japanese Crested
Kosyakushigi	Numenius minitus	Curlew, Little
Shiroharacyushakushigi	Numenius tenuirostris	Curlew, Slender-Billed
Hawaishiroharamizunagidori	Pterodroma phaeopygia sandwichensis	Petrel, Hawaiian Dark-rumped
Chishimaugarasu	Phalacrocorax urile	Cormorant, Red-Faced
Ahō-dori	Phoebastria (=Diomedea) albatrus	Albatross, Short-Tailed (=Stellar's)
Miyubigera	Picoides tridactylus inouyei	Woodpecker, Inouye's Three-Toed
Yairocyou	Pitta brachyura nympha	Pitta, Fairy
Yanbaru kuina	Gallirallus okinawae	Rail, Okinawa
Noguchigera	Sapheopipo noguchii	Woodpecker, Pryer's
Amami yamashigi	Scolopax mira	Woodcock, Amami
Kanmuriwashi	Spilornis cheela perplexus	Eagle, Crested Serpent
Kumataka	Spizaetus nipalensis orientalis	Eagle, Hodgson's Hawk
Koajisashi	Sterna albifrons	Tern, Little
Kanmuritsukushigamo	Tadorna cristata	Shelducks, Crested
Karafuto aoashishigi	Tringa guttifer	Greenshank, Nordmann's
Ootoratsugumi	Turdus dauma amami	Thrush, White's Ground
Umigarasu	Uria aalge inornata	Guillemot
Omgarasu	Mammals	Gumeniot
NT1		
Nihon kawauso	Lutra Nippon	Otter, Japanese
Tsushima yamaneko	Prionailurus bengalensis. euptilura	Cat, Tsushima
Iriomote yamaneko	Prionailurus bengalensis iriomotensis	Cat, Iriomote

Table C13.T1. Threatened and Endangered Species of Wild Fauna & Flora in Japan

Japanese Name	Scientific Name	English Name
Amamino kurousagi	Pentalagus furnessi	Rabbit, Ryukyu
Daito-ookoumori	Pteropus dasymallus daitoensis	Flying Fox, Daito
Okinawa-ookoumori	Pteropus loochoensis	Flying Fox, Okinawa
Ogasawara-ookoumori	Pteropus pselaphon	Flying Fox, Bonin
Kerama-jika	Cervus nippon keramae	Deer, Ryukyu Sika
Jugong	Dugong dugon	Dugong
Nihon zaru	Macaca fuscata	Macaque, Japanese
Shiro-nagasu-kujira	Balaenoptera musculus	Whale, Blue
Nagasu-kujira	Balaenoptera physalus	Whale, Finback
Koku-kujira	Eschrichtius robustus	Whale, Gray
Zato-kujira	Megaptera novaeangliae	Whale, Humpback
Semi-kujira	Balaena glacialis (incl. australis)	Whale, Right
Iwashi-kujira	Balaenoptera borealis	Whale, Sei
Makko-kujira	Physeter catodon(=macrocephalus)	Whale, Sperm
Higuma	Ursus arctos	Bear, Brown
Tsukinowaguma	Ursus thibetanus	Bear, Moon (=Asian Black Bear)
1 Sukino waguina	Reptiles	Dear, Woon (Asian Diack Dear)
Kikuzato-sawa-hebi	-	Snake, Kikuzato's Stream
	Opisthotropis kikuzatoi Chelonia mydas	Shake, Kikuzato's Stream Sea Turtle, Green
Aoumigame Taimai	<i>Eretmochelys imbricata</i>	Sea Turtle, Hawksbill
	Dermochelys impricata Dermochelys coriacea	Sea Turtle, Hawkson
Osagame	· · · · · · · · · · · · · · · · · · ·	
Akaumigame	Caretta caretta	Sea Turtle, Loggerhead
Himeumigame	Lepidochelys olivacea	Sea Turtle, Olive Ridley (=Pacific)
	Amphibians	- 1
Abesanshouuo	Hynobius abei	Salamander, Abe's
Oosanshouuo	Andrias japonicus (=davidianus j.)	Salamander, Japanese giant
	Fish	
Itasenpara	Acheilognathus longipinnis	Bitterling, Deepbody
Suigenzenitanago	Rhodeus atremius suigensis	Bitterling, Suwon Rosy
Miyakotanago	Tanakia tanago	Bitterling, Tokyo
Nekogigi	Coreobagrus ichikawai	Catfish
Ayumodoki	Leptobotia curta (=Hymenophysa)	Loach, Kissing
	Insects	
Yasya Gengoro	Acilius kishii	Diving Beetle
Ogasawara shijimi	Celastrina ogasawaraensis	Butterfly, Ogasawara Blue
Ogasawara hanmyou	Cicindela bonina	Tiger Beetle
Yanbaru Tenagakogane	Cheirotonus jambar	Yanbaru Long-Armed Scarab
Marukogatanogengorou	Cybister lewisianus	Diving Beetle
Fuchitorigengorou	Cybister limbatus	Diving Beetle
Sharp gengoroumodoki	Dytiscus sharpi	Beetle, Diving
Ogasawara tombo	Hemicordulia ogasawarensis	Dragonfly, Ogasawara
Ogasawara aoitotombo	Indolestes boninensis	Damselfly
Bekkotombo	Libellula angelina	Dragonfly
Hyoumonmodoki	Melitaea scotosia	Fritillary, Scotosia
Yonaguni Marubane	Neolucanus insulicola donan	Stag Beetle
Kuwagata		-
Ishigakiniinii	Platypleura albivannata	Cicada
Hanadaka tombo	Rhinocypha ogasawarensis	Damselfly
Goishitsubame Shijimi	Shijimia moorei	Cupid, Moore's
	Plants	· · · ·
Shimakakosou	Ajuga boninsimae	Nuphar submerse
Asahiebine	Calanthe hattorii	
1 iounicome	Caranine nation ii	

Japanese Name	Scientific Name	English Name
Hoshitsururan	Calanthe hoshii	
Kitadakesou	Callianthemum insigne var. Hondoense	
Urajirokomurasaki	Callicarpa nishimurae	
Urajirokomurasaki	Callicarpa nishimurae	
Chousenkibana Atsumorisou	Cypripedium guttatum	Spotted Lady's Slipper Orchid
Hotei Atsumori	Cypripedium macranthum var. hotei	
	atsumorianum	
Rebun Atsumorisou	Cypripedium macranthum var.	
	rebunense	
Atsumorisou	Cypripedium macranthum var.	
	speciosum	
Okinawa Sekkoku	Dendrobium okinawense	
Himetaniwatari	Hymenasplenium cardiophyllum	
Kogomekinoeran	Liparis elliptica	
Shimahozakiran	Malaxis boninensis	
Muninnobotan	Melastoma tetramerum	
Shimotsuke kouhone	Nuphar submersa	
Taiyoufuutoukazura	Piper postelsianum	
Kobatobera	Pittosporum parvifolium	
Kunigamitonbosou	Platanthera sonoharai	
Hanashinobu	Polemonium kiushianum	Jacob's Ladder
Amami Denda	Polystichum obae	
Kakkosou	Primula kisoana var. kisoana	
Munintsutsuji	Rhododendron boninense	
Urajirohikagetsutsuji	Rhododendron keiskei var.	
	hypoglaucum	
Uchidashikuroki	Symplocos kawakamii	
Yadori Kokemomo	Vaccinium amamianum	

Japanese	Scientific	English	Region	
Rurikakesu Garrulus lidthi		Lidth's Jay	Kagoshima	
Amaminokurousagi	Pentalagus furnessi	Amami Hare, Amami Rabbit	Kagoshima	
Raicho	Lagopus mutus japonicus	Ptarmigan	Toyama, Nagano, Gifu, Niigata, Yamanashi, Shizuoka	
Tosa onagadori Gallus gallus		Tosa Fowl	Japan	
Akita inu	Canis familiaris	Akita Dog	Japan	
Kai ken	Canis familiaris	Kai Dog	Yamanashi	
Toki	Nipponia nippon	Japanese Crested Ibis	Not found in wild	
Oosanshouuo	houuo Andrias japonicas (=davidanus j.)		Okayama, Hyogo, Tottori, Yamaguchi, Mie, Aichi, Gifu Ooita	
Kounotori	ounotori <i>Ciconia boyciana</i> (=ciconnia b.)		Not found in wild	
Koshigaya shirakobato	Streptopelia decaocto	Collared Turtle	Saitama	
	decaocto	Dove		
Ahō-dori	<i>Phoebastria</i> (= Diomedea) <i>albatrus</i>	Short-Tailed Albatross	Tokyo, Okinawa	
Nihon kawauso	Lutra lutra nippon	Japanese Otter	Ehime, Kochi	
Usubakicho	Parnassius eversmanni	Eversmann's Parnassius	Hokkaido	
Daisetsu takanehikage	Oeneis melissa daisetsuzara	Daisetsuzana Arctic	Hokkaido	
Asahi hyoumon	Clossiana freija	Freija Fritillary	Hokkaido	
Kumagera	Dryocopus martius	Black Woodpecker	Hokkaido, Iwate, Akita, Aomori	
Inuwashi	Aquila chrysaetos japonica	Golden Eagle	Japan	
Karafuto rurishijimi	Albulina optilete	Hedge Blue	Hokkaido	
Tancho	Grus japonensis	Japanese Crane	Hokkaido	
Akagashira karasubato	J 1		Tokyo (Ogasawara Islands)	
Ogasawara ookoumori	asawara ookoumori Pteropus pselaphon		Tokyo (Ogasawara Islands)	
Apalopteron familiare		Bonin Flying Fox Bonin Island Honeyeater	Tokyo	
gasawara shijimi Celastrina ogasawaraensis		Ogasawara Hedge Blue	Tokyo (Hahajima Island)	
Shima akane Boninthemis insularis		Ogasawara Common Skimmer	Tokyo (Ogasawara Islands)	
Ogasawara itotombo	Indolestes noninensis	Damselfly	Tokyo (Ogasawara Islands)	
Hanadaka tombo	Rhinocypha ogasawarensis	Damselfly	Tokyo (Ogasawara Islands)	
Ojirowashi	Haliaeetus albicilla	White-tailed Sea- Eagle	Hokkaido, Niigata	
Oowashi	Haliaeetus pelagicus	Steller's Sea Eagle	Hokkaido, Ishikawa, Fukui	
Akahige	Luscinia komadori	Ryukyu Robin	Kagoshima, Nagasaki, Okinawa	
Ogasawara amenbo	Neogerris boninensis	Ogasawara Pond Skater Tokyo (Ogasawara Island		
Ogasawara kumabachi Xylocopa ogasawarensis		Ogasawara Tokyo (Ogasawara Islands) Carpenter Bee		

Table C13.T2. Natural Monument Species in Japan

Japanese	Scientific	English	Region
Ohsutonooakagera	hsutonooakagera Dendrocopos leucotos owstoni		Kagoshima
		Woodpecker	
Ezo shimafukurou	Ketupa blakistoni blakistoni	Blakiston's Fish	Hokkaido
		Owl	
Ootora tsugumi	Zoothera dauma major	White's Ground	Kagoshima
		Thrush	
Ogasawara nosuri	Buteo buteo toyoshimai	Buzzard	Tokyo (Ogasawara Islands)
Karasubato	Columba janthina janthina	Japanese Wood	Mie, Wakayama, Nagasaki,
		Pigeon	Kagoshima, Okinawa
Kokugan	Branta bernicla orientalis	Brant Tsushima Wild	Hokkaido, Aomori, Akita
Tsushima yamaneko	sushima yamaneko Prionailurus bengalensis		Nagasaki (Tsushima Island)
		Cat	
Hishikui	Anser fabalis	Bean Goose	Hokkaido, Aomori, Miyagi,
			Niigata, Ishikawa
Magan	Anser albifrons	White-Fronted	Hokkaido, Aomori, Miyagi,
		Goose	Niigata, Ishikawa
Tsushima ten	Martes melampus tsuensis	Tsushima Marten	Nagasaki (Tsushima Island)
Kenaganezumi	Diplothrix legata	Long Fur Rat	Kagoshima, Okinawa
Togenezumi	Tokudaia osimensis	Spiny Rat	Kagoshima, Okinawa
Noguchigera	Sapheopipo noguchii	Pryer's	Okinawa
		Woodpecker	
Iriomote yamaneko	Prionailurus bengalensis	Iriomote Wild Cat	Okinawa
	iriomotensis		
Yaeyama semaruhakogame	Cuora flavomarginata	Yellow-	Okinawa (Ishigakijima Island
	evelynae	Marginated Box	and Iriomotejima Island)
		Turtle	
Kin(n)bato	Chalcophaps indica	Emerald Dove	Okinawa
	yamashinai	~	
Kanmuriwashi	Spilornis cheela perplexus	Crested Serpent	Okinawa (Ishigakijima Island
		Eagle	and Iriomotejima Island)
Iwakuni shirohebi	Elaphe climacophora f. Albino	Iwakuni Snake	Yamaguchi
Daitoh ookoumori	Pteropus dasymallus	Daito Flying Fox	Okinawa
T .	daitoensis	.	
Itasenpara	Acheilognathus logipinnis	Itasenpara	Oosaka, Aichi, Gifu, Toyama
XC 1 /		Bitterling	
Miyakotanago	Tanakia tanago	Tokyo Bitterling	Tochigi, Saitama, Chiba,
III		Manulatan Claimman	Kanagawa
Himechamadaraseseri	Pyrgus malvae	Maculatus Skipper	Hokkaido
Goishitsubameshijimi	Shijimia moorei moorei	Moore's Cupid	Kumamoto
Akakokko	Turdus celaenops	Seven Islands	Tokyo, Kagoshima
Erabu ookoumori	Dtonomus darama 11.	Thrush	Vagashime
ETADU OOKOUMOIT	Pteropus dasymallus dasymallus	Erabu Flying Fox	Kagoshima
Vamana		Japanasa	Ionon Wide (avent Heldreide
Yamane	Glirulus japonicus	Japanese Dormouse	Japan Wide (except Hokkaido, and Okinawa)
Kanmuriumisuzume	Synthliboramphuswumizusume	Japanese Murrelet	Tokyo, Shizuoka, Mie,
Kannunununusuzunie	syniniioorumpnuswumizusume	Japanese Murrelet	Fukuoka, Okinawa
T''' 1'1 '	DI 11 ····	T''' I 177'11	
Iijima mushikui	Phylloscopus ijimae	Iijima's Willow	Tokyo, Kagoshima, Okinawa
IZ al in constal a		Warbler Kiskingersle Cient	
Kishinouetokage	Plestiodon kishinouyei	Kishinoue's Giant	Okinawa (Miyako Islands,
		Skink	Yaeyama Islands)

Japanese	Scientific	English	Region
Ryukyuyamagame	Geoemyda japonica	Ryukyu Black-	Okinawa (Okinawa Island,
		Breasted Leaf	Kumejima Island, Tokashiki
		Turtle	Island)
Ayumodoki	Parabotia curta	Japanese Catfish	Shiga, Kyoto, Osaka,
			Okayama
Nekogigi	Tachysurus ichikawai Bagrid Catfish		Gifu, Aichi, Mie
Yanbarukuina	Gallirallus okinawae	Okinawa Rail	Okinawa
Yanbarutenagakogane	Cheirotonus jambar	Yanbaru Long-	Okinawa
		Armed Scarab	
		Beetle	
Kishuu ken	Canis familiaris	Kishu Dog	Nonspecified
Kamoshika	Capricornis crispus	Japanese Serow	Japan Wide (except Hokkaido,
			Okinawa)
Koshinoinu	Canis familiaris	Koshinoinu	Nonspecified
Toutenko	Gallus gallus	Totenko	Nonspecified
Shiba ken	Canis familiaris	Shiba Dog	Nonspecified
Tosa ken	Canis familiaris	Tosa Dog	Nonspecified
Minohikichabo	Gallus gallus	Minohikichabo	Nonspecified
Uzurachabo	Gallus gallus	Uzurachabo	Nonspecified
Hokkaido ken	Canis familiaris	Hokkaido Dog	Nonspecified
Koeyoshidori	Gallus gallus	Koeyoshidori	Nonspecified
Toumaru	Gallus gallus	Tomaru	Nonspecified
Minohikidori	Gallus gallus	Minohiki	Nonspecified
Shoukoku	Gallus gallus	Ogunidori	Nonspecified
Jidori	Gallus gallus	Jidori	Nonspecified
Shamo	Gallus gallus	Shamo	Nonspecified
Chabo	Gallus gallus	Chabo	Nonspecified
Ukokkei	Gallus gallus	Ukkokkei	Nonspecified
Hinaidori	Gallus gallus	Hinaidori	Nonspecified
Jittokko	Gallus gallus	Jitokko	Nonspecified
Satsumadori	Gallus gallus	Satsumadori	Nonspecified
Kawachiyakko	Gallus gallus	Kawachiyakko	Nonspecified
Kurokashiwakei	Gallus gallus	Kurokashiwa	Nonspecified
Naranoshika	Cervus nippon	Japanese Deer	Nara (Nara)
Ogasawara tamamushi	Chrysochroa holstii	Ogasawara Jewel	Tokyo (Ogasawara Islands)
-		Beetle	
Ogasawara tombo	Hemicordulia ogasawarensis	Ogasawara	Tokyo (Ogasawara Islands)
-		Dragonfly	
Ogasawara zemi	Meimuna boninensis	Ogasawara Cicada	Tokyo (Ogasawara Islands)
Okayadokari	Coenobita cavipes	Land Hermit Crab	Tokyo, Kagoshima, Okinawa
Kasagai	Cellana mazatlandica	Limpet	Tokyo (Ogasawara Islands)
Ogasawara sesujigengoro	Copelatus ogasawarensis	Ogasawara Diving	Tokyo (Ogasawara Islands)
		Beetle	

Japanese	Scientific	English	Region
Ogasawarashotorikusangai	Helicinidae, Truncatellidae,	Ogasawar land	Tokyo (Ogasawara Islands)
(yamakisagoka,	Assimineidae, Ellobiidae,	snails	
kubikiregaika,	Succineidae, Elasmatinidae,		
kawazanshougaika,	Vertiginidae, Buliminidae,		
okamimigaika,	Endodotidae, Zonitidae,		
okamonoaragaika,	Helicarionidae, Camaenidae		
nomigaika,			
kibasanagigaika,	Note: Scientific name of		
kiserugaimodokika,	Family		
enzagaika, kohakugaika,	-		
bekkoumaimaika,			
nanbanmaimaika)			
Note: This species is			
listing "Family" belong			
Ogasawarashotorikusangai.			
Jugon	Dugong dugon	Dugong	Okinawa

Class	Order	Family	Genus	Invasive Alien Species
		1.	Animal Kingdom	
Mammalia	Marsupialia	Didelphidae	Didelphis	Uncategorized
			All other genera of Didelphidae	Uncategorized
		Phalangeridae	Trichosurus	Brushtail possum (T. vulpecula)
			All other genera of Phalangeridae	Uncategorized
	Insectivora	Erinaceidae	Erinaceus	Any species of the genus <i>Erinaceus</i>
			Atelerix Hemiechinus Mesechinus	Uncategorized
	Primates	Cercopithecidae	Macaca	Taiwan macaque (<i>M. cyclopis</i>)
		1		Crab-eating macaque (<i>M. fascicularis</i>) Rhesus macaque (<i>M. mulatta</i>)
	Rodentia	Agoutidae	All genera of Agoutidae	Uncategorized
		Capromyidae	All genera of Capromyidae	Uncategorized
		Dinomyidae	All genera of Dinomyidae	Uncategorized
		Myicastoridae	Myocastor	Coypu or Nutria (M. coypus)
		Sciuridae	Callosciurus	Pallas's squirrel or Taiwan squirrel (C. erythraeus)
			Pteromys	Russian (or Siberian) flying squirrel (<i>P. volans</i>) excluding Japanese subspecies (<i>P. volans orii</i>)
			Sciurus	Gray squirrel (S. carolinensis)
				Eurasian red squirrel (<i>S. vulgaris</i>) excluding Japanese subspecies
				(S. vulgaris orientis)
			All other genera of Sciuridae	Uncategorized
		Muridae	Ondratra	Muskrat (O. zibethicus)
	Carnivora	Procyonidae	Procyon	Raccoon (P. lotor)
				Crab-eating raccoon (P. cancrivorus)
		Mustelidae Herpestidae	Mustela Herpestes	American mink (<i>M. vison</i>) Javan mongoose (<i>H. javanicus</i>)
		Therpestidae	Tierpestes	Small Indian mongoose (<i>H. auropunctataus</i>)
			Mungos	Banded mongoose (<i>M. mungo</i>)
	Artiodactyla	Cervidae	Axis	All species of the genus Axis
			Cervus	All species of the genus <i>Cervus</i> excluding: <i>C. nippon centralis</i> <i>C. nippon keramae</i>
				C. nippon wageshimae
				C. nippon nippon
				C. nippon pulchellus
				C. nippon yakushimae C. Nippon yesoensis
			Dama	All species of the genus <i>Dama</i>
			Elaphurus	Pere David's deer (E. davidianus)
			Muntiacus	Reeves's muntjac (M. reevesi)
Aves	Passeriformes	Timaliidae	Garrulax	Laughing thrushes (<i>G. canorus</i>)
				White-browed laughingthrush (<i>G. sannio</i>) Masked laughingthrush (<i>G. perspicillatus</i>)
			Leiothrix	Red-billed mesia (<i>L. lutea</i>)
			All other genera of Timaliidae	Uncategorized
Reptilia	Testudinata	Chelydridae	Chelydra	Snapping turtle (C. serpentina)
			All other genera of Chelydridae	Uncategorized
	Squamata	Iguanidae	Anolis	A. angusticeps
		(Polychrotidae)		Green anole (A. carolinensis) Knight anole (A. equestris)

Table C13.T3. Invasive Species Prohibited from Introduction in Japan

Class	Order	Family	Genus	Invasive Alien Species
				A. garmanni
				Brown anole (A. sagrei)
				(A. allogus)
				(A. allutaceus)
				(A. homolechis)
			Norops	Uncategorized
		Colubridae	Boiga	Green cat snake <i>B. cyanea</i>
				Dog-toothed cat snake (B. cynodon)
				Gold-ringed cat snake, Mangrove snake) (B.
				<i>dendrophila</i>) Brown tree snake (<i>B. irregularis</i>)
				Black-heade Cat snake (<i>B. nigriceps</i>)
			Psammodvnastes	Uncategorized
			Elaphe	Taiwan beauty snake (<i>E. taeniura friesi</i>)
		Viperidae	Protobothrops	Taiwan pit vipers (<i>P. mucrosquamatus</i>)
		viperidae	Bothrops	Uncategorized
Amphibia	Anura	Bufonidae	Bufo	Great plains toad(<i>B. cognatus</i>)
7 impinota	7 mara	Buromaac	Bujo	Spotted toad (<i>B. guttatus</i>)
				Cane toad (<i>B. marinus</i>)
				Red-spotted toad (<i>B. punctatus</i>)
				Oak toad (<i>B. quercicus</i>)
				Texas toad (B. speciosus)
				South American common toad (<i>B. typhonius</i>)
		Hylidae	Osteopilus	Cuban tree frog (<i>O. septentrionalis</i>)
		Leptodactylidae	Eleutherodactylus	Puerto Rican coqui (E. coqui)
		Ranidae	Rana	Bullfrog (<i>R. catesbeiana</i>)
		Rhacorhoridae	Polypedates	Asian tree frog (P. leucomystax)
Osteichthyes	Siluriformes	Ictaluridae	Ictalurus	Channel catfish (I. punctatus)
2			Ameiurus	Uncategorized
	Esociformes	Esocidae	Esox	Northern pike (E. lucius)
				Muskellunge (E. masquinongy)
	Cyprinodontiformes	Poeciliidae	Gambusia	Western mosquito fish (<i>G. affinis</i>)
	Perciformes	Centrarchidae	Lepomis	Bluegill (<i>L. macrochirus</i>)
	(Percoidei)	Centrarenidae	Micropterus	Smallmouth bass (<i>M. dolomieu</i>)
	(i cicoluci)		meropierus	Largemouth bass (<i>M. salmoides</i>)
			All other genera of	Uncategorized
			Centrarchidae	CheuceSonzea
		Centropomidae	All genera of	Uncategorized
		F	Centropomidae	
		Nandidae	All genera of Nandidae	Uncategorized
			Morone	
		Moronidae	Morone	Striped bass (M. saxatilis)
		Moronidae	Morone	Striped bass (<i>M. saxatilis</i>) White bass (<i>M. chrysops</i>)
		Moronidae		White bass (M. chrysops)
		Moronidae	All genera of	
			All genera of Moronidae	White bass (<i>M. chrysops</i>) Uncategorized
		Moronidae Percichthyidae	All genera of	White bass (M. chrysops)
			All genera of Moronidae Gadopsis	White bass (M. chrysops) Uncategorized Uncategorized
			All genera of Moronidae Gadopsis Maccullochella Macquaria	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized
			All genera of Moronidae Gadopsis Maccullochella	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized
		Percichthyidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized
		Percichthyidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Eurasian perch (P. fluviatilis)
		Percichthyidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized
		Percichthyidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion)	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Eurasian perch (P. fluviatilis)
		Percichthyidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Eurasian perch (P. fluviatilis) Pikeperch (S. lucioperca) Uncategorized
		Percichthyidae Percidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Eurasian perch (P. fluviatilis) Pikeperch (S. lucioperca) Uncategorized Mandarin fish (S. chuatsi)
Arachnid	Scorpiones	Percichthyidae Percidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Eurasian perch (P. fluviatilis) Pikeperch (S. lucioperca) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri)
Arachnid	Scorpiones Araneae	Percichthyidae Percidae Sinipercidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca All genera of Buthidae	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the familyButhidae
Arachnid	Scorpiones Araneae	Percichthyidae Percidae Sinipercidae Buthidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca All genera of Buthidae Atrax	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. chuatsi) Any species of the familyButhidae All other species of the genus Atrax
Arachnid		Percichthyidae Percidae Sinipercidae Buthidae Hexathelidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca All genera of Buthidae Atrax Hadronyche	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the familyButhidae All other species of the genus Atrax Any species of the genus Hadronyche
Arachnid		Percichthyidae Percidae Sinipercidae Buthidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca All genera of Buthidae Atrax	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the familyButhidae All other species of the genus Atrax Any species of the genus Hadronyche (L. recluse)
Arachnid		Percichthyidae Percidae Sinipercidae Buthidae Hexathelidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca All genera of Buthidae Atrax Hadronyche	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the familyButhidae All other species of the genus Atrax Any species of the genus Hadronyche (L. recluse) (L. laeta)
Arachnid		Percichthyidae Percidae Sinipercidae Buthidae Hexathelidae Loxoscelidae	All genera of Moronidae <i>Gadopsis</i> <i>Maccullochella</i> <i>Macquaria</i> <i>Percichthys</i> <i>Gymnocephalus</i> <i>Perca</i> <i>Sander</i> <i>(Stizostedion)</i> <i>Zingel</i> <i>Siniperca</i> All genera of Buthidae <i>Atrax</i> <i>Hadronyche</i> <i>Loxosceles</i>	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the familyButhidae All other species of the genus Atrax Any species of the genus Hadronyche (L. recluse) (L. laeta) (L. gaucho)
Arachnid		Percichthyidae Percidae Sinipercidae Buthidae Hexathelidae	All genera of Moronidae Gadopsis Maccullochella Macquaria Percichthys Gymnocephalus Perca Sander (Stizostedion) Zingel Siniperca All genera of Buthidae Atrax Hadronyche	White bass (M. chrysops) Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Uncategorized Eurasian perch (P. fluviatilis) Pikeperch (S. lucioperca) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the genus Atrax Any species of the genus Hadronyche (L. recluse) (L. laeta) (L. gaucho) Brown widow spider (L. geometricus)
Arachnid		Percichthyidae Percidae Sinipercidae Buthidae Hexathelidae Loxoscelidae	All genera of Moronidae <i>Gadopsis</i> <i>Maccullochella</i> <i>Macquaria</i> <i>Percichthys</i> <i>Gymnocephalus</i> <i>Perca</i> <i>Sander</i> <i>(Stizostedion)</i> <i>Zingel</i> <i>Siniperca</i> All genera of Buthidae <i>Atrax</i> <i>Hadronyche</i> <i>Loxosceles</i>	White bass (M. chrysops) Uncategorized Mandarin fish (S. chuatsi) Mandarin fish (S. scherzeri) Any species of the familyButhidae All other species of the genus Atrax Any species of the genus Hadronyche (L. recluse) (L. laeta) (L. gaucho)

Class	Order	Family	Genus	Invasive Alien Species
				tredecimguttatus)
Crustacea	Decapoda	Astacidae	Astacus	Any species of the genus Astacus
			Atlantoastacus	Signal crayfish (P. leniusculus)
			Austropotamobius	
			Caspiastacus	
		0 1 1	Pacifastacus	
		Cambaridae	Orconectes	Rusty crayfish (O. rusticus)
			All genera of	Uncategorized
		Parastacidae	Cambaridae Cherax	Any maning of the gamus Chause
		Parastacidae	All genera of	Any species of the genus <i>Cherax</i> Uncategorized
			Parastacidae	
		Varunidae	Eriocheir	Any species of the genus <i>Eriocheir</i> excluding Japanese mitten crab (<i>E. japonica</i>)
Insecta	Coleoptera	Scarabaeidae	Cheirotonus	Any species of the genus <i>Cheirotonus</i> excluding Yanbaru Long-armed scarab (<i>C. jambar</i>)
			Euchirus	Any species of the genus Euchirus
			Propomacrus	Any species of the genus Propomacrus
	Hymenoptera	Apidae	Bombus	Large earth bumblebee (B. terrestris)
		Formicidae	Solenopsis	Red imported fire ant (S. invicta)
				Fire ant (S. geminata)
			Linepithema	Argentine ant or Tropical fire ant (L. humile)
			Wasmannia	Little fire ant (<i>W. auropunctata</i>)
Mollusca	Mytiloida	Mytilidae	Limnoperna	Any species of the genus Limnoperna
	Veneroida	Dreissenidae	Dreissena	Quagga mussel (D. bugensis)
				Zebra mussel (D. polymorpha)
	Stylommatophora	Haplotrematidae	Ancotrema Haplotrema	Uncategorized
		Oleacinidae	All genera of Oleacinidae	Uncategorized
		Rhytididae	All genera of Rhytididae	Uncategorized
		Spiraxidae	Euglandina	Cannibal snail (E. rosea)
			All genera of Spiraxidae	Uncategorized
		Streptaxidae	All genera of Streptaxidae	Uncategorized
		Subulinidae	All genera of Subulinidae	Uncategorized
Platyhelminthes	Tricladida	Rhynchodemidae	Platydemus	Predatory flatworm (P. manokwari)
	·	2.	Plant Kingdom	
Tracheophyte	Sympetalae	Compositae	Coreopsis	Lanceleaf tickseed (excluding cut flowers) (C.
				lanceolata)
			Gymnocoronis	Senegal tea plant (G. spilanthoides)
			Rudbeckia	Cutleaf coneflower (excluding cut flowers)
	1		Senecio	(<i>R. laciniata</i>)
			1 APRPCIO	
		Caranhulania		Madagascar ragwort (S. madagascariensis)
		Scrophulariaceae	Veronica	Water speedwell (excluding cut flowers) (V. anagallis-aquatica)
	Caryophyllales	Scrophulariaceae Amaranthaceae		Water speedwell (excluding cut flowers) (V. anagallis-aquatica)
	Caryophyllales	_	Veronica	Water speedwell (excluding cut flowers) (V. anagallis-aquatica) Alligatorweed (A. philoxeroides) Floating marshpennywort or Pennywort (H.
	Caryophyllales	Amaranthaceae Apiaceae	Veronica Alternanthera Hydrocotyle	Water speedwell (excluding cut flowers) (V. anagallis-aquatica) Alligatorweed (A. philoxeroides) Floating marshpennywort or Pennywort (H. ranunculoides)
	Caryophyllales	Amaranthaceae Apiaceae Cucurbitaceae	Veronica Alternanthera Hydrocotyle Sicyos	Water speedwell (excluding cut flowers) (V. anagallis-aquatica) Alligatorweed (A. philoxeroides) Floating marshpennywort or Pennywort (H. ranunculoides) Bur cucumber (S. angulatus)
		Amaranthaceae Apiaceae Cucurbitaceae Haloragaceae	Veronica Alternanthera Hydrocotyle Sicyos Myriophyllum	Water speedwell (excluding cut flowers) (V. anagallis-aquatica) Alligatorweed (A. philoxeroides) Floating marshpennywort or Pennywort (H. ranunculoides) Bur cucumber (S. angulatus) Parrotfeather (M. aquaticum)
	Caryophyllales Liliopsida	Amaranthaceae Apiaceae Cucurbitaceae	Veronica Alternanthera Hydrocotyle Sicyos	Water speedwell (excluding cut flowers) (V. anagallis-aquatica) Alligatorweed (A. philoxeroides) Floating marshpennywort or Pennywort (H. ranunculoides) Bur cucumber (S. angulatus)

C14. <u>CHAPTER 14</u>

POLYCHLORINATED BIPHENYLS

C14.1. <u>SCOPE</u>

This Chapter contains criteria to control and abate threats to human health and the environment from the handling, use, storage, and disposal of polychlorinated biphenyls (PCB). These criteria include specific requirements for most uses of PCBs, including, but not limited to, transformers, capacitors, heat transfer systems, hydraulic systems, electromagnets, switches and voltage regulators, circuit breakers, reclosers, and cables.

C14.2. DEFINITIONS

C14.2.1. <u>Capacitor</u>. A device for accumulating and holding a charge of electricity and consisting of conducting surfaces separated by a dielectric.

C14.2.2. <u>Chemical Waste Landfill</u>. A landfill at which a high level of protection against risk of injury to human health or the environment from migration of deposited PCBs to land, water, or the atmosphere is provided by incorporating special methods for locating, engineering, and operating the landfill.

C14.2.3. <u>In or Near Commercial Buildings</u>. Within the interior of, on the roof of, attached to the exterior wall of, in the parking area serving, or within 30 meters of a non-industrial, non-substation building.

C14.2.4. <u>Incinerator</u>. An engineered device using controlled-flame combustion to thermally degrade PCBs and PCB items. Examples include rotary kilns, liquid injection incinerators, cement kilns, and high temperature boilers.

C14.2.5. <u>Leak or Leaking</u>. Any instance in which a PCB article, PCB container, PCB equipment, has any PCBs on any portion of its external surface.

C14.2.6. <u>Mark</u>. The descriptive name, instructions, cautions, or other information applied to PCBs and PCB items, or other objects subject to these JEGS.

C14.2.7. <u>Marked</u>. PCB items and PCB storage areas marked by applying a legible mark by painting, fixation of an adhesive label, or by any other method that meets these criteria.

C14.2.8. <u>Non-PCB Dielectric Fluid</u>. Dielectric fluid from heavy electrical equipment that contains less than or equal 0.5 mg/kg (ppm) PCB.

C14.2.9. <u>Non-PCB Transformer</u>. Any transformer that contains less than or equal to 0.5 mg/kg (ppm) PCB.

C14.2.10. <u>PCB Article</u>. Any manufactured article, other than a PCB container, that contains PCBs and whose surface(s) has been in direct contact with PCB. This includes capacitors, transformers, electric motors, pumps, and pipes.

C14.2.11. <u>PCB Article Container</u>. Any package, can, bottle, bag, barrel, drum, tank, or other device used to contain PCB articles or PCB equipment, and whose surface(s) has not been in direct contact with PCBs.

C14.2.12. <u>PCB Container</u>. Any package, can, bottle, bag, barrel, drum, tank, or other device that contains PCBs or PCB articles, and whose surface(s) has been in direct contact with PCBs.

C14.2.13. <u>PCB-Contaminated Electrical Equipment</u>. Any electrical equipment including, but not limited to, transformers, capacitors, circuit breakers, reclosers, voltage regulators, switches, electromagnets, and cable, that contain greater than 0.5 mg/kg (ppm) of PCB, but <500 ppm PCB.

C14.2.14. <u>PCB Equipment</u>. Any manufactured item, other than a PCB container or a PCB article container, which contains a PCB article or other PCB equipment, and includes microwave ovens, electronic equipment, and fluorescent light ballasts and fixtures.

C14.2.15. <u>PCB Item</u>. Any PCB article, PCB article container, PCB container, or PCB equipment that deliberately or unintentionally contains or has as a part of it any detectable concentration of PCB.

C14.2.16. <u>PCB Transformer</u>. Any transformer that contains \geq 500 ppm PCB.

C14.2.17. <u>Restricted Access Area</u>. Areas where access by unauthorized personnel is controlled by fences, other man-made structures, or naturally occurring barriers such as mountains, cliffs, or rough terrain.

C14.2.18. <u>Substantial Contact Area</u>. An area that is subject to public access on a routine basis or which could result in substantial dermal contact by employees.

C14.2.19. <u>PCB Large High Voltage Capacitor</u>. A capacitor that contains 1.36 kg (3 lbs.) or more of dielectric fluid and which operates at 2,000 volts (alternating current (AC) or direct current (DC)) or above.

C14.2.20. <u>PCB Large Low Voltage Capacitor</u>. A capacitor that contains 1.36 kg (3 lbs.) or more of dielectric fluid and which operates below 2,000 volts (AC or DC).

C14.3. CRITERIA

C14.3.1. General

C14.3.1.1. The installation spill contingency plan will address PCB items, including temporary storage items. Chapter 18, "Spill Prevention and Response Planning," provides criteria on how to prepare these plans.

C14.3.1.2. Spills of PCB liquids will be responded to immediately upon discovery and cleaned up in accordance with the following:

C14.3.1.2.1. Surfaces that are located in substantial contact areas will be cleaned to 10 micrograms (μ g) per 100 square centimeters (cm²).

C14.3.1.2.2. Surfaces in all other contact areas will be cleaned to 100 μ g per 100 cm².

C14.3.1.2.3. Contaminated soil located in restricted access areas will be removed until the soil tests no higher than 25 ppm PCBs and will be backfilled with clean soil containing <1 ppm PCBs. Restricted access areas in which PCB spills have been cleaned up shall have annotated on installation real property records the level of PCBs remaining in the soil, including the extent, date and type of sampling, and a reference to any reports documenting the site conditions.

C14.3.1.2.4. Contaminated soil located in unrestricted access areas will be removed to a minimum depth of 10 inches or until the soil tests \leq 10 ppm PCBs, whichever is deeper, and will be backfilled with clean soil containing <1 ppm PCBs.

C14.3.1.3. All PCB transformers, PCB Large High Voltage Capacitors, PCB containers, and certain PCB items containing PCBs (i.e., electric motors using PCB coolants, hydraulic systems using PCB hydraulic fluid, and heat transfer systems using PCBs), as well as any PCB article containers used to store the preceding items, must be prominently marked in English and Japanese. The marking must identify the item as containing PCBs, warn against improper disposal and handling, and provide a phone number in case of spills or if questions arise about disposal. This marking criteria also applies to rooms, vaults, and storage areas containing PCB transformers or storing PCBs or PCB items for disposal. In addition, the following PCB items must be marked at the time of items' removal from use if not already marked: PCB Large Low Voltage Capacitors and equipment containing a PCB transformer or PCB Large High Voltage Capacitor.

C14.3.1.4. Each installation having PCB items will maintain a written inventory that includes a current list by type of all marked PCB items in use and PCB items (whether or not marked) placed into storage for disposal or disposed of for that year. Inventory records should be maintained for a period of time at least 3 years after disposal of the last item on the list.

C14.3.1.5. Disposal of PCB items by the U.S. Government will only be through the servicing DLA Disposition Services in accordance with DoD 4160.21-M, "Defense Materiel Disposition Manual," August 18, 1997, authorized by DoD 4140.1-R, "Department of Defense Materiel Management Regulation," May 23, 2003, or paragraph C14.3.5 of this Guide.

C14.3.1.6. All periodic inspections as required in this Chapter will be documented at the installation. Records of inspections and maintenance history will be maintained for 3 years after disposal of the transformer.

C14.3.2. <u>PCB Transformers (≥500 ppm PCB)</u>

C14.3.2.1. PCB transformers that are in use or in storage for reuse will not be used in any application that poses a risk of contamination to food or feed.

C14.3.2.2. All PCB transformers, including those in storage for reuse, will be registered with the servicing fire department.

C14.3.2.3. PCB transformers in use in or near commercial buildings or located in sidewalk vaults will be equipped with electrical protection to minimize transformer failure that would result in the release of PCBs.

C14.3.2.4. PCB transformers removed and stored for reuse will only be returned to their original application and location and will not be used at another location unless there is no practical alternative; and any such alternative use will not exceed 1 year.

C14.3.2.5. PCB transformers will be serviced as follows:

C14.3.2.5.1. Transformers classified as PCB-contaminated electrical equipment will only be serviced with dielectric fluid containing <500 ppm PCB;

C14.3.2.5.2. Any servicing of PCB transformers requiring removal of the transformer coil is prohibited;

C14.3.2.5.3. PCBs removed during servicing will be captured and disposed of in accordance with paragraph C14.3.5;

C14.3.2.5.4. PCB transformers may be serviced with dielectric fluid at any PCB concentration. However, the dielectric fluid from a PCB transformer will not be mixed with the dielectric fluid from PCB-contaminated electrical equipment;

C14.3.2.5.5. Regardless of PCB concentration, dielectric fluids containing <500 ppm PCBs that are mixed with fluids containing ≥500 ppm PCBs will not be used as dielectric fluid in any electrical equipment. The entire mixture must be considered to be >500 ppm PCBs; and

C14.3.2.5.6. Dielectric fluids containing \geq 500 ppm PCBs will not be used as dielectric fluid in any transformers classified as PCB-contaminated electrical equipment.

C14.3.2.6. All in-service PCB transformers (>500 ppm) will be inspected at least every 3 months except that PCB transformers with impervious, undrained secondary containment capacity of 100% of dielectric fluid or PCB transformers tested and found to contain <60,000 ppm PCBs will be inspected at least every 12 months.

C14.3.2.7. If any PCB transformer is involved in a fire and was subjected to heat and/or pressure sufficient to result in violent or nonviolent rupture, the installation will take measures to control water runoff, such as blocking floor drains. Runoff water will be tested and disposed of in accordance with Chapter 4, "Wastewater."

C14.3.2.8. Leaking PCB transformers shall be repaired or replaced within 48 hours or as soon as possible after discovery of the leak. Leaking PCB transformers not repaired or replaced will be inspected daily. Leaking PCB fluid will be containerized.

C14.3.2.9. All transformers will be considered and treated as PCB transformers unless information to the contrary exists.

C14.3.3. Other PCB Items.

C14.3.3.1. Electromagnets, switches, and voltage regulators that may contain PCBs at any concentration are serviced as follows:

C14.3.3.1.1. PCB-contaminated electrical equipment will only be serviced with dielectric fluid containing <500 ppm PCB;

C14.3.3.1.2. Servicing any electromagnet, switch, or voltage regulator with a PCB concentration of \geq 500 ppm that requires the removal and rework of the internal components is prohibited;

C14.3.3.1.3. PCBs removed during servicing will be captured and either reused as dielectric fluid or disposed of properly;

C14.3.3.1.4. PCBs from electromagnets, switches, and voltage regulators with a PCB concentration of \geq 500 ppm will not be mixed with or added to dielectric fluid from PCB-contaminated electrical equipment; and

C14.3.3.1.5. Dielectric fluids containing \geq 500 ppm will not be used as dielectric fluid in any electromagnet, switch, or voltage regulator classified as PCB-contaminated electrical equipment.

C14.3.3.2. Capacitors containing PCBs at any concentration must be managed as follows:

C14.3.3.2.1. Use and storage for reuse of PCB Large High Voltage Capacitors and PCB Large Low Voltage Capacitors that pose an exposure risk to food or feed is prohibited;

C14.3.3.2.2. Use of PCB Large High Voltage and PCB Large Low Voltage Capacitors is prohibited unless the capacitor is used within a restricted-access electrical substation or in a contained and restricted-access indoor installation. The indoor installation will not have public access and will have an adequate roof, walls, and floor to contain any release of PCBs; and

C14.3.3.2.3. Any PCB item removed from service will be marked with the date it is removed from service.

C14.3.4. <u>Storage</u>

C14.3.4.1. PCBs and PCB items that are to be stored before disposal will be stored in a facility that will assure the containment of PCBs, including:

C14.3.4.1.1. Roofs and walls of storage buildings that exclude rainfall;

C14.3.4.1.2. A containment berm, at least 6 inches high, sufficient to contain twice the internal volume of the largest PCB article, or 25% of the total internal volume of all PCB articles or containers stored, whichever is greater;

C14.3.4.1.3. Drains, valves, floor drains, expansion joints, sewer lines, or other openings constructed to prevent any release from the bermed area;

C14.3.4.1.4. Continuous, smooth, and impervious flooring material; and

C14.3.4.1.5. To the maximum extent possible, a new PCB storage area will be located to minimize the risk of release due to seismic activity, floods, or other natural events. For facilities located where there is a high possibility of such risks, the installation spill prevention and control plan will address the risk.

C14.3.4.2. The following items may be stored temporarily in an area, subject to weekly inspection, that does not comply with the above requirements for up to 30 days from the date of removal from service:

C14.3.4.2.1. Non-leaking PCB items, marked to indicate whether it is a PCB article or PCB equipment;

C14.3.4.2.2. Leaking PCB articles and PCB equipment placed in a non-leaking PCB container that contains sufficient absorbent material to absorb fluid contained in the PCB article or equipment;

C14.3.4.2.3. PCB containers in which non-liquid PCBs have been placed; and

C14.3.4.2.4. PCB containers in which PCBs at a concentration <500 ppm have been placed, and whose containers are marked to indicate there is <500 ppm PCB.

C14.3.4.3. Non-leaking and structurally undamaged Large PCB High Voltage Capacitors and PCB-contaminated electric equipment that have not been drained of free-flowing dielectric fluid may be stored on pallets, or raised platforms, next to a storage area meeting the criteria of paragraph C14.3.4 if they are inspected weekly.

C14.3.4.4. All other PCB storage areas will be inspected at least monthly.

C14.3.4.5. Containers used for the storage of PCBs will be at least as secure as those required for their transport for disposal by the servicing DLA Disposition Services.

C14.3.5. Disposal

C14.3.5.1. Installations that generate PCB waste will maintain an audit trail for the wastes at least as stringent as that required under the criteria in Chapter 6, "Hazardous Waste."

C14.3.5.2. PCB waste shall NOT be treated by DoD components without obtaining prior written approval from the DoD Lead Environmental Component.

C14.3.5.3. <u>Retrogrades of PCB Items</u>. DoD-generated PCB items manufactured in the U.S. will be returned to the U.S. for delivery to a permitted disposal facility if Japan or third country disposal is not possible, is prohibited, or would not be managed in an environmentally sound manner. Ensure that all PCB items and equipment are marked in accordance with criteria in paragraph C14.3.1.3.

C14.3.6. Elimination of PCB Products

C14.3.6.1. Installations shall minimize the use of PCBs and PCB items without degrading mission performance.

C14.3.6.2. Installations shall not purchase or otherwise take control of PCBs or PCB items for use.

C14.3.6.3. All procurement of transformers or any other equipment containing dielectric or hydraulic fluid shall be accompanied by a manufacturer's certification that the equipment contains no detectable PCBs at the time of shipment.

C14.3.6.4. Such newly procured transformers and equipment shall have permanent labels affixed stating they are PCB-free (no detectable PCBs).

C15. <u>CHAPTER 15</u>

ASBESTOS

C15.1. <u>SCOPE</u>

This Chapter contains criteria to control and abate threats to human health and the environment from asbestos, and describes management of asbestos during removal and disposal. Policy requirements for a comprehensive Occupational Health and Safety program are not covered in this Chapter. To protect personnel from asbestos exposure, refer to DoDI 6055.1 ("DoD Safety and Occupational Health (SOH) Program," August 19, 1998) and DoDI 6055.5 ("Occupational and Environmental Health (OEH), November 11, 2008) and concomitant service instructions.

C15.2. DEFINITIONS

C15.2.1. <u>Adequately Wet</u>. Sufficiently mix or penetrate with liquid to prevent the release of particulates. If visible emissions coming from ACM are observed, then that material has not been adequately wetted. However, the absence of visible emissions is not sufficient evidence of being adequately wet.

C15.2.2. <u>Asbestos</u>. Generic term used to describe six distinctive varieties of fibrous mineral silicates, including chrysotile, amosite, crocidolite, tremolite asbestos, anthrophylite asbestos, actinolite asbestos, and any other of these materials that have been chemically treated and/or altered.

C15.2.3. <u>Asbestos-Containing Material (ACM)</u>. Any material containing more than 0.1% asbestos by weight.

C15.2.4. <u>Friable Asbestos</u>. Any material containing more than 0.1% asbestos fibers that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

C15.2.5. <u>Category I Nonfriable ACM</u>. Means asbestos containing packings, gaskets, resilient floor covering, and asphalt roofing products containing more than 0.1% asbestos.

C15.2.6. <u>Category II Nonfriable ACM</u>. Means any material, excluding Category I nonfriable ACM, containing more than 0.1% asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure.

C15.2.7. <u>Regulated ACM</u>. Means (a) Friable asbestos material, (b) Category I Nonfriable ACM that has become friable, (c) Category I Nonfriable ACM that will be or has been subjected to sanding grinding, cutting, or abrading, or (d) Category II Nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of demolition or renovation operations.

C15.3. <u>CRITERIA</u>

C15.3.1. Installations will appoint an asbestos program manager to serve as the single point of contact for all asbestos-related activities.

C15.3.2. Installations will prepare and implement an asbestos management plan. As a minimum, the plan will include the following:

C15.3.2.1. An ACM inventory, conducted by sample and analysis or visual determination;

C15.3.2.2. A notification and education program to tell workers, tenants, and building occupants where potentially friable ACM is located, and how and why to avoid disturbing the ACM; all persons affected should be properly informed;

C15.3.2.3. Regular ACM surveillance to note, assess, and document any changes in the ACM's condition;

C15.3.2.4. Work control/permit systems to control activities that might disturb ACM;

C15.3.2.5. Operations and maintenance (O&M) work practices to avoid or minimize fiber release during activities affecting ACM;

C15.3.2.6. Record keeping to document O&M activities related to asbestos identification management and abatement;

C15.3.2.7. Training for the asbestos program manager as well as custodial and maintenance staff;

C15.3.2.8. Procedures to assess and prioritize identified hazards for abatement; and

C15.3.2.9. Procedures to prevent the use of ACM in new construction.

C15.3.3. Prior to demolition or renovation of a facility, the installation will make a determination whether or not the activity will remove or disturb ACM, and will record this determination on the project authorization document (e.g., work order).

C15.3.4. Prior to demolition or renovation of a facility that involves removing or disturbing friable ACM, a written assessment of the action will be prepared and furnished to the installation commander. A copy of the assessment will also be kept on permanent file.

C15.3.5. Installations will remove friable ACM when the ACM poses a threat to release airborne asbestos fibers and cannot be reliably repaired or isolated.

C15.3.6. Before disturbing or demolishing a facility or part of a facility, installations will remove all regulated ACM. Where appropriate, the removal process shall include:

C15.3.6.1. Air-tight enclosure of work area where ACM will be removed;

C15.3.6.2. Airlock at entry point to enclosure;

C15.3.6.3. Use of negative pressure exhaust ventilation equipment, in conjunction with High Efficiency Particulate Air (HEPA) filters (conforming to JIS Z8122, or equivalent);

C15.3.6.4. Adequately wet the ACM during the removal process.

C15.3.7. When disposing of all asbestos waste, installations will do the following:

C15.3.7.1. Segregate all asbestos waste into one of the two following types:

C15.3.7.1.1. <u>Type I waste</u>. Type I waste shall be categorized as a Specified Hazardous Industrial Waste (SHIW), which is a subcategory of Specially Controlled Industrial Waste (SCIW). Type 1 waste includes, but is not limited to: sprayed asbestos; asbestos lagging material; diatomaceous earth (kieselguhr) lagging material; Pearlite lagging material; lagging material that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure, or when placed in contact with moving air or vibration; items contaminated with asbestos as a result of asbestos removal operations (e.g., PPE, plastic sheeting); items contaminated with asbestos (e.g., respirators, asbestos dust collection filters, equipment); and imported asbestos.

C15.3.7.1.2. <u>Type II waste</u>. Type II waste shall be categorized as an Industrial Waste, and refers to all other waste containing more than 0.1% asbestos by weight. Type II waste includes, but is not limited to: fire safes; slate board; cement board; siding board; floor tile; gaskets; packing; cement pipe; and brake shoes.

C15.3.7.2. Adequately wet all waste ACM or solidify waste ACM using cement;

C15.3.7.3. Seal each segregated type of waste ACM in a double high strength plastic bag; and

C15.3.7.4. Properly dispose of it in an appropriate GoJ-approved or licensed facility or landfill for each type of waste ACM. Type I waste may also be melted and disposed of in a landfill designated by the GoJ to receive treated asbestos waste. All bags will be labeled, in both English and Japanese, with the following information:

C15.3.7.4.1. Whether it is a Type I or Type II Waste; and

C15.3.7.4.2. "DANGER - CONTAINS ASBESTOS FIBERS - AVOID CREATING DUST - CANCER AND LUNG DISEASE HAZARD."

C15.3.7.5. Permanent records documenting the disposal action and site will be maintained.

C15.3.8. DoD schools will comply with applicable requirements of 15 U.S.C. 2643(l) and implementing regulations in 40 CFR Part 763, Subpart E ("Asbestos-Containing Materials in Schools," current edition), replacing all references to "one percent," "1 percent," and "1%" with "0.1%, consistent with the definition of ACM in this chapter.

C15.3.9. Determination of ACM

C15.3.9.1. In cases where a records review or visual inspection results in a presumption that material is ACM, the material may be designated as ACM, thereby precluding the need for further testing.

C15.3.9.2. For determination of asbestos content by testing methods, bulk samples must be analyzed by the National Institute of Standard and Technology / National Voluntary Laboratory Accreditation Program (NIST/NVLAP) accredited laboratory using polarized light microscopy (PLM) following USEPA methods for determination of asbestos. The laboratory shall have a working definition of "Trace" amounts of asbestos, and the laboratory shall report any detectable amount of asbestos in a bulk sample that is less than the PLM Limit of Quantification of 1% as a "Trace" concentration. If PLM does not detect the presence of asbestos (e.g. "non-detect"), the material shall be considered <0.1% asbestos. If PLM analysis detects asbestos in any discernible amount (to include "trace" or "less than 1%"), the material shall be considered >0.1% asbestos unless proven to be non-ACM by the use of quantification methods capable of achieving an analytical sensitivity of less than 0.1%, such as Transmission Electron Microscopy (TEM) or 1000 point counting.

C16. <u>CHAPTER 16</u>

RESERVED

C17. <u>CHAPTER 17</u>

LEAD-BASED PAINT

C17.1. <u>SCOPE</u>

This Chapter contains criteria to establish and implement a lead hazard management program to identify, control, or eliminate lead-based paint hazards, through interim controls or abatement, in child-occupied facilities and military family housing, in a manner protective of human health and the environment. Policy requirements for a comprehensive Occupational Health and Safety program are not covered in this Chapter. To protect personnel from lead exposure, refer to DoDI 6055.1 "DoD Safety and Occupational Health (SOH) Program," August 19, 1998, DoDI 6055.5 "Industrial Hygiene and Occupational Health," November 11, 2008, and concomitant service instructions.

C17.2. DEFINITIONS

C17.2.1. <u>Abatement</u>. Any set of measures designed to permanently eliminate lead-based paint or lead-based paint hazards. Abatement includes the removal of lead-based paint and lead contaminated dust, the permanent enclosure or encapsulation of lead-based paint, the replacement of components or fixtures painted with lead-based paint, and the removal or covering of lead-contaminated soil. Abatement also includes all preparation, cleanup, disposal, and post-abatement clearance activities associated with such measures.

C17.2.2. <u>Accessible Surface</u>. An interior or exterior surface painted with lead-based paint that is accessible for a young child to mouth or chew.

C17.2.3. <u>Bare Soil</u>. Soil, including sand, not covered by grass, sod, or other live ground covers, or by wood chips, gravel, artificial turf, or similar covering.

C17.2.4. <u>Child-Occupied Facility</u>. A facility, or portion of a facility, visited regularly by the same child, 6 years of age or under, on at least 2 different days within any week, provided that each days' visit lasts at least 3 hours and the combined weekly visits last at least 6 hours, and the combined annual visits last at least 60 hours. Child-occupied facilities may include, but are not limited to, day-care centers, preschools, playgrounds, and kindergarten classrooms.

C17.2.5. <u>Clearance</u>. Visual evaluation and testing (collection and analysis of environmental samples) conducted after lead-based paint hazard reduction activities, interim controls, and standard treatments to determine that the work is complete and no lead-contaminated bare soil or lead-contaminated settled dust exist in a facility frequented by children under the age of 6.

C17.2.6. <u>Deteriorated Paint</u>. Any interior or exterior paint or other coating that is peeling, chipping, chalking, cracking, or is otherwise damaged or separated from the substrate.

C17.2.7. <u>Elevated Blood Lead Level</u>. A confirmed concentration of lead in whole blood of 20 μ g/dl (micrograms of lead per deciliter) for a single test, or 15-19 μ g/dl in 2 tests taken at least 3 months apart.

C17.2.8. <u>Encapsulation</u>. The application of any covering or coating that acts as a barrier between the lead-based paint and the environment. Encapsulation may be used as a method of abatement if it is designed to be permanent.

C17.2.9. <u>Enclosure</u>. The use of rigid, durable construction materials that are mechanically fastened to the substrate to act as a barrier between lead-based paint and the environment. Enclosure may be used as a method of abatement if it is designed to be permanent.

C17.2.10. <u>Evaluation</u>. A visual evaluation, risk assessment, risk assessment screen, paint inspection, paint testing, or a combination of risk assessment and paint inspection to determine the presence of deteriorated paint, lead-based paint, or a lead-based paint hazard.

C17.2.11. <u>Friction Surface</u>. An interior or exterior surface that is subject to abrasion or friction, including but not limited to, window, floor, and stair surfaces.

C17.2.12. <u>Hazard Reduction</u>. Measures designed to reduce or eliminate human exposure to lead-based paint hazards through various methods, including interim controls or abatement or a combination of the two.

C17.2.13. <u>Impact Surface</u>. An interior or exterior surface that is subject to damage by repeated sudden force, such as certain parts of doorframes.

C17.2.14. <u>Interim Controls</u>. A set of measures designed to temporarily reduce human exposure or likely exposure to lead-based paint hazards. Interim controls include, but are not limited to, repairs, occasional and ongoing maintenance, painting, temporary containment, specialized cleaning, clearance, ongoing activities, and the establishment and operation of management and resident education programs.

C17.2.15. <u>Lead-Based Paint</u>. Paint or other surface coatings that contain lead ≥ 1.0 milligram per cm², or 0.5% by weight or 5,000 ppm by weight.

C17.2.16. <u>Lead-based paint hazard</u> includes paint-lead-hazard, dust-lead hazard or soil-lead hazard as identified below:

C17.2.16.1. Paint-lead hazard. A paint-lead hazard is any of the following:

C17.2.16.1.1. Any lead-based paint on a friction surface that is subject to abrasion and where the lead dust levels on the nearest horizontal surface underneath the friction surface (e.g., the window sill, or floor) are equal to or greater than the dust-lead hazard levels identified in paragraph C17.2.16.2.

C17.2.16.1.2. Any damaged or otherwise deteriorated lead-based paint on an impact surface that is caused by impact from a related building component (such as a doorknob that knocks into a wall or a door that knocks against its doorframe).

C17.2.16.1.3. Any chewable lead-based painted surface on which there is evidence of teeth marks.

C17.2.16.1.4. Any other deteriorated lead-based paint in any residential building or child-occupied facility or on the exterior of any residential building or child-occupied facility.

C17.2.16.2. <u>Dust-lead hazard (previously defined as lead-contaminated dust)</u>. Surface dust in a residential dwelling or child-occupied facility that contains a mass-per-area concentration of lead \geq 40 µg/ft² on floors or 250 µg/ft² on interior window sills based on wipe samples.

C17.2.16.3. <u>Soil-lead hazard (previously defined as lead-contaminated soil)</u>. Bare soil on residential real property or on the property of a child-occupied facility that contains total lead \geq 400 ppm (µg/g) in a play area, or an average of 1,200 ppm of bare soil in the rest of the yard based on soil samples.

C17.2.17. <u>Lead-Based Paint Inspection</u>. A surface-by-surface investigation to determine the presence of lead-based paint, and the provision of a report explaining the results of the investigation.

C17.2.18. Permanent. An expected design life of at least 20 years.

C17.2.19. <u>Reevaluation</u>. A visual evaluation of painted surfaces and limited dust and soil sampling conducted periodically following lead-based paint hazard reduction where lead-based paint is still present.

C17.2.20. <u>Replacement</u>. A strategy of abatement that entails removing building components that have surfaces coated with lead-based paint (such as windows, doors, and trim) and installing new components free of lead-based paint.

C17.2.21. <u>Risk Assessment</u>. An on-site investigation to determine the existence, nature, severity, and location of lead-based paint hazards and the provision of a report explaining the results of the investigation and options for reducing lead-based paint hazards.

C17.2.22. <u>Risk Assessment Screen</u>. A sampling protocol that is used in dwellings that are in relatively good condition and where the probability of finding lead-based hazards are low. The protocol involves inspecting such dwellings and collecting samples from representative locations on the floor, interior window sills, and window troughs to determine whether conducting a risk assessment is warranted.

C17.3. CRITERIA

C17.3.1. Installations will:

C17.3.1.1. Develop and implement a multi-disciplinary lead-based paint hazard management program to identify, evaluate, and reduce lead-based paint hazards in child-occupied facilities and military family housing.

C17.3.1.2. Manage identified lead-based paint hazards through interim controls or abatement.

C17.3.1.3. Identify lead-based paint hazards in child-occupied facilities and military family housing using any or all of the following methods:

C17.3.1.3.1. Lead-based paint risk assessment screen. If screen identifies dust-lead levels >25 μ g/ft² for floors, >125 μ g/ft² for interior window sills, a lead-based paint risk assessment should be performed.

C17.3.1.3.2. Lead-based paint risk assessments.

C17.3.1.3.3. Routine facility inspection for fire and safety.

C17.3.1.3.4. Occupant, facility manager, and worker reports of deteriorated paint.

C17.3.1.3.5. Results of childhood blood lead screening or reports of children identified to have elevated blood lead levels.

C17.3.1.3.6. Lead-based paint reevaluations.

C17.3.1.3.7. Review of construction, painting, and maintenance histories.

C17.3.1.4. Ensure occupants and worker protection measures are taken during all maintenance, repair, and renovation activities that disturb areas known or assumed to have lead-based paint.

C17.3.1.5. Disclose the presence of any known lead-based paint or lead-based paint hazards to occupants of child-occupied facilities and military family housing and provide information on lead-base paint hazard reduction. In addition, inform occupants of military family housing, prior to conducting remodeling or renovation projects, of the hazards associated with these activities, and provide information on protecting family members from the hazards of lead-based paint.

C17.3.1.6. Ensure that all personnel involved in lead-based activities, including paint inspection, risk assessment, specification or design, supervision, and abatement, are properly trained.

C17.3.1.7. Dispose of lead-contaminated waste that meets the definition of a hazardous waste in accordance with Chapter 6, "Hazardous Waste," paragraph C6.2.7.

C18. <u>CHAPTER 18</u>

SPILL PREVENTION AND RESPONSE PLANNING

C18.1. <u>SCOPE</u>

This Chapter contains criteria to plan for, prevent, control, and report spills of POL and hazardous substances. It is DoD policy to prevent spills of these substances due to DoD activities and to provide for prompt, coordinated response to contain and clean up spills that might occur. Remediation beyond that required for the initial response is conducted pursuant to DoDI 4715.08, "Remediation of Environmental Contamination outside the United States," November 1, 2013.

C18.2. DEFINITIONS

C18.2.1. <u>Aboveground Storage Container</u>. POL storage containers, exempt from UST criteria, that are normally placed on or above the surface of the ground. POL storage containers located above the floor and contained in vaults or basements, bunkered containers, and also partially buried containers are considered aboveground storage containers. For the purposes of this Chapter, this includes any mobile or fixed structure, tank, equipment, pipe, or pipeline (other than a vessel or a public vessel) used in oil well drilling operations, oil production, oil refining, oil storage, oil gathering, oil processing, oil transfer, and oil distribution. This also includes equipment in which oil is used as an operating fluid but excludes equipment in which oil is used solely for motive power.

C18.2.2. <u>Decontamination Wastes</u>. Waste materials generated during the decontamination of equipment and personnel used during spill response including but not limited to purging water, rinsing water, plastic containers, rags, gloves, and other personal protective equipment.

C18.2.3. <u>Hazardous Substance</u>. Any substance having the potential to do serious harm to human health or the environment if spilled or released in reportable quantity. A list of these substances and the corresponding reportable quantities is contained in Appendix 1 (AP1), "Characteristics of Hazardous Waste and Lists of Hazardous Waste and Hazardous Material." Hazardous substances do not include:

C18.2.3.1. Petroleum, including crude POL or any fraction thereof, that is not otherwise specifically listed or designated as a hazardous substance above.

C18.2.3.2. Natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas).

C18.2.4. <u>Facility Incident Commander (FIC) (previously known as the Installation On-</u><u>scene Coordinator</u>). The official who coordinates and directs DoD control and cleanup efforts at the scene of a POL or hazardous substance spill due to DoD activities on or near the installation. This official is designated by the installation commander.

C18.2.5. <u>Facility Response Team (FRT) (previously known as the Installation Response</u> <u>Team)</u>. A team performing emergency functions as defined and directed by the FIC. C18.2.6. <u>Oil</u>. Oil of any kind or in any form, including, but not limited to, petroleum, fuel POL, lube oils, animal fats, vegetable oil, sludge, POL refuse, and POL mixed with wastes other than dredged spoil.

C18.2.7. <u>POL</u>. Refined petroleum, oils, and lubricants. (see also definition in Chapter 9, "Petroleum, Oil, and Lubricants.")

C18.2.8. <u>Significant Spill</u>. An uncontained release to the land or water in excess of any of the following quantities:

C18.2.8.1. For hazardous wastes or hazardous substances identified as a result of inclusion in Table AP1.T4., "List of Hazardous Waste/Substances/Materials," any quantity in excess of the reportable quantity listed in that table;

C18.2.8.2. For POL or liquid or semi-liquid hazardous material, hazardous waste or hazardous substances, in excess of 400 liters (110 gallons);

C18.2.8.3. For other solid hazardous material in excess of 225 Kg (500 pounds);

C18.2.8.4. For combinations of POL and liquid, semi-liquid, and solid hazardous materials, hazardous waste or hazardous substance, in excess of 340 Kg (750 pounds); or

C18.2.8.5. If a spill is contained inside an impervious berm, or on a nonporous surface, or inside a building and is not volatilized and is cleaned up, the spill is considered a contained release and is not considered a significant spill.

C18.2.9. <u>Worst Case Discharge</u>. The largest foreseeable discharge from the facility, under adverse weather conditions, as determined using as a guide the worst case discharge planning volume criteria in Appendix 2 (AP2), "Determination of Worst Case Discharge Planning Volume."

C18.3. CRITERIA

C18.3.1. <u>Spill Prevention Control and Reporting Plan Requirement</u>. All DoD installations will prepare, maintain, and implement a Spill Prevention and Response Plan, which provides for the prevention, control, and reporting of all spills of POL and hazardous substances. The plan will provide measures to prevent, and to the maximum extent practicable, to remove a worst case discharge from the facility. The plan should be kept in a location easily accessible to the FIC and FRT.

C18.3.1.1. The plan will be updated at least every 5 years or:

C18.3.1.1.1. Within 6 months of any significant changes to operations.

C18.3.1.1.2. When there have been two significant spills to navigable waters in any 12-month period;

C18.3.1.1.3. When there has been a spill of > 3,800 liters (1,000 gallons).

C18.3.1.2. The plan shall be certified by an appropriately licensed or certified technical authority ensuring that the plan considers applicable industry standards for spill prevention and environmental protection, that the plan is prepared in accordance with good engineering practice, and is adequate for the facility. Technical changes (i.e., non-administrative) to the plan require recertification.

C18.3.2. <u>Prevention Section</u>. The prevention section of the plan will, at a minimum, contain the following:

C18.3.2.1. Name, title, responsibilities, duties, and telephone number of the designated FIC and an alternate.

C18.3.2.2. General information on the installation including name, type or function, location and address, charts of drainage patterns, designated water protection areas, maps showing locations of facilities described in paragraph C18.3.2.3, critical water resources, land uses, and possible migration pathways.

C18.3.2.3. An inventory of storage, handling, and transfer sites that could possibly produce a significant spill. For each listing, using maps as appropriate, a prediction of the direction and rate of flow should be included, as well as the total quantity of POL or hazardous substances that might be spilled as a result of a major failure.

C18.3.2.4. An inventory of all POL and hazardous substances at storage, handling, and transfer facilities described in paragraph C18.3.2.3.

C18.3.2.5. Procedures for the periodic integrity testing of all aboveground storage containers, including visual inspection and where deemed appropriate, another form of nondestructive testing. The frequency and type of inspection and testing must take into account container size and design (floating/fixed roof, skid-mounted, elevated, cut-and cover, partially buried, vaulted above-ground, etc.) and industry standards.

C18.3.2.6. Procedures for periodic inspection for all above ground valves, piping, and appurtenances associated with POL storage containers, in accordance with Chapter 9, "Petroleum, Oil, and Lubricants," paragraph C9.3.2.5.

C18.3.2.7. <u>Arrangements for Emergency Services</u>. The plan will describe arrangements with installation and/or local police departments, fire departments, hospitals, contractors, and emergency response teams to coordinate emergency services.

C18.3.2.8. <u>Means to Contact Emergency Services</u>. The plan will include a telephone number or other means to contact the appropriate emergency service provider (e.g., installation fire department) on a 24-hour basis.

C18.3.2.9. A detailed description of the facility's prevention, control, and countermeasures, including structures and equipment for diversion and containment of spills, for each site listed in the inventory. Measures should permit, as far as practical, reclamation of spilled substances. Chapters governing hazardous materials, hazardous waste, POL, underground

storage tanks, pesticides, and PCBs provide specific criteria for containment structure requirements.

C18.3.2.10. When secondary containment is not feasible for any container listed in the inventory, the plan shall include a detailed explanation of measures that will be taken to prevent spills (e.g., pre-booming, integrity testing, frequent inspection), as determined by the licensed or certified technical authority.

C18.3.2.11. A list of all emergency equipment (such as fire extinguishing systems, spill control equipment, communications and alarm systems (internal and external), and decontamination equipment) at each site listed in the inventory where this equipment is required. This list will be kept up-to-date. In addition, the plan will include the location and a physical description of each item on the list, and a brief outline of its capabilities.

C18.3.2.12. An evacuation plan for each site listed in the inventory, where there is a possibility that evacuation would be necessary. This plan will describe signal(s) to be used to begin evacuation, evacuation routes, alternate evacuation routes (in cases where the primary routes could be blocked by releases of hazardous waste or fires), and a designated meeting place.

C18.3.2.13. A description of deficiencies in spill prevention and control measures at each site listed in the inventory, to include corrective measures required, procedures to be followed to correct listed deficiencies and any interim control measures in place. Corrective actions must be implemented within 24 months of the date of plan preparation or revision.

C18.3.2.14. Written procedures for:

C18.3.2.14.1. Operations to preclude spills of POLs and hazardous substances;

C18.3.2.14.2. Inspections; and

C18.3.2.14.3. Record keeping requirements.

C18.3.2.15. Site-specific procedures should be maintained at each site on the facility where significant spills could occur.

C18.3.3. <u>Spill Control Section</u>. The control section of the plan (which may be considered a contingency plan) will identify resources for cleaning up spills at installations and activities, and to provide assistance to other agencies when requested. At a minimum, this section of the plan will contain:

C18.3.3.1. Provisions specifying the responsibilities, duties, procedures, and resources to be used to contain and clean up spills.

C18.3.3.2. A description of immediate response actions that should be taken when a spill is first discovered.

C18.3.3.3. The responsibilities, composition, and training requirements of the FRT.

C18.3.3.4. The command structure that will be established to manage a worst case discharge. Include an organization chart and the responsibilities and composition of the organization.

C18.3.3.5. Procedures for FRT alert and response to include provisions for:

C18.3.3.5.1. Access to a reliable communications system for timely notification of a POL spill or hazardous substance spill.

C18.3.3.5.2. Public affairs involvement.

C18.3.3.6. A current roster of the persons, and alternates, who must receive notice of a POL or hazardous substance spill, including a Defense Energy Support Center (DESC) representative if applicable. The roster will include name, organization mailing address, and work and home telephone number. Without compromising security, the plan will include provisions for the notification of the emergency coordinator after normal working hours.

C18.3.3.7. The plan will provide for notification of the FIC, installation commander, and local authorities in the event of hazard to human health or environment.

C18.3.3.8. Assignment of responsibilities for making the necessary notifications, including notification to the emergency services providers.

C18.3.3.9. Surveillance procedures for early detection of POL and hazardous substance spills.

C18.3.3.10. A prioritized list of various critical water and natural resources that will be protected in the event of a spill.

C18.3.3.11. Other resources addressed in prearranged agreements that are available to the installation to cleanup or reclaim a large spill due to DoD activities, if such spill exceeds the response capability of the installation.

C18.3.3.12. Cleanup methods, including procedures and techniques used to identify, contain, disperse, reclaim, and remove POL and hazardous substances used in bulk quantity on the installation.

C18.3.3.13. Procedures for the proper reuse and disposal of recovered substances, decontamination wastes, contaminated POL and absorbent materials, and procedures to be accomplished prior to resumption of operations.

C18.3.3.14. A description of general health, safety, and fire prevention precautions for spill cleanup actions.

C18.3.3.15. A public affairs section that describes the procedures, responsibilities, and methods for releasing information in the event of a spill.

C18.3.4. <u>Reporting Section</u>. The reporting section of the spill plan will address the following:

C18.3.4.1. Recordkeeping when emergency procedures are invoked.

C18.3.4.2. Any significant spill will be reported to the FIC immediately. Immediate actions will be taken to eliminate the source and contain the spill. Defense Fuel Support Points shall additionally comply with USFJ Instruction 23-101 (current edition) for DLA Energy capitalized fuel.

C18.3.4.3. The FIC will immediately notify the appropriate In-Theater Component Commander and the DoD Lead Environmental Component and submit a follow-up written report on USFJ Form 50 (current fillable PDF version of the form is available at <u>http://www.usfj.mil/</u>, under the "USFJ Forms" link) when:

C18.3.4.3.1. The spill occurs inside a DoD installation and cannot be contained within any required berm or secondary containment;

C18.3.4.3.2. The spill exceeds 400 liters (110 gallons) of POL;

C18.3.4.3.3. A water resource has been polluted; or

C18.3.4.3.4. The FIC has determined that the spill is significant, as in for example:

C18.3.4.4. When a significant spill occurs inside a DoD installation and cannot be contained within the installation boundaries or threatens the local Japanese drinking water resource, off-base population or property, the appropriate in-theater component commander, DoD Lead Environmental Component and the appropriate GoJ authorities will be notified immediately.

C18.3.4.5. If a significant spill occurs outside of a DoD installation, the person in charge at the scene will immediately notify the authorities listed in paragraph C18.3.4.4, and additionally will notify the local fire departments and obtain necessary assistance.

C18.3.5. Installations will provide necessary training and spill response drills to ensure the effectiveness of personnel and equipment.

C18.3.6. After completion of the initial response, any remaining free product and/or obviously contaminated soil will be appropriately removed and managed. Further action will be governed by DoD Instruction 4715.08, "Remediation of Environmental Contamination outside the United States," November 1, 2013.

C19. <u>CHAPTER 19</u>

UNDERGROUND STORAGE TANKS

C19.1. <u>SCOPE</u>

This Chapter contains criteria to control and abate pollution resulting from POL products and hazardous materials stored in USTs. Standards for USTs containing hazardous wastes are covered in Chapter 6, "Hazardous Waste." Criteria for aboveground and below ground POL storage containers are addressed in Chapter 9, "Petroleum, Oil, and Lubricants."

C19.2. DEFINITIONS

C19.2.1. <u>Deferred UST</u>. A deferred UST is an underground tank system that fits into one of the following categories:

C19.2.1.1. A hydrant fuel distribution system; or

C19.2.1.2. A field-constructed tank.

C19.2.2. <u>Hazardous Material</u>. Any material defined as a hazardous material in Chapter 5, "Hazardous Material." The term does not include:

C19.2.2.1. Petroleum, including crude POL or any fraction thereof, that is not otherwise specifically listed or designated as a hazardous material above.

C19.2.2.2. Natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas).

C19.2.3. <u>Hazardous Material UST</u>. A UST that contains a hazardous material (but not including hazardous waste as defined in Chapter 6) or any mixture of such hazardous materials and petroleum, and which is not a petroleum UST.

C19.2.4. <u>POL</u>. Refined petroleum, oils, and lubricants.

C19.2.5. <u>Tank Tightness Testing</u>. A test that must be capable of detecting a 0.38 liter (0.1 gallon) per hour leak from any portion of the tank that routinely contains product while accounting for the effects of thermal expansion or contraction of the product, vapor pockets, tank deformation, evaporation or condensation, and the location of the water table.

C19.2.6. <u>Underground Storage Tank (UST)</u>. Any tank, including underground piping connected thereto, larger than 416 liters (110 gallons), that is used to contain POL products or hazardous material and the volume of which, including the volume of connected pipes, is 10% or more beneath the surface of the ground, but does not include:

C19.2.6.1. Tanks containing heating oil used for consumption on the premises where it is stored;

C19.2.6.2. Septic tanks;

C19.2.6.3. Storm water or wastewater collection systems;

C19.2.6.4. Flow through process tanks;

C19.2.6.5. Surface impoundments, pits, ponds, or lagoons;

C19.2.6.6. Field constructed tanks;

C19.2.6.7. Hydrant fueling systems;

C19.2.6.8. Storage tanks located in an accessible underground area (such as a basement or vault) if the storage tank is situated upon or above the surface of the floor;

C19.2.6.9. UST containing *de minimis* concentrations of regulated substances, except where paragraph C19.3.2.7 is applicable; and

C19.2.6.10. Emergency spill or overflow containment UST systems that are expeditiously emptied after use.

C19.3. CRITERIA

C19.3.1. All installations will maintain a UST inventory.

C19.3.2. <u>POL USTs</u>. All petroleum UST systems will be properly installed, protected from corrosion, provided with spill/overfill prevention, and will incorporate leak detection as described below.

C19.3.2.1. <u>Corrosion Protection</u>. USTs and piping must be provided with corrosion protection unless constructed of fiberglass or other non-corrodible materials. The corrosion protection system must be certified by competent authority.

C19.3.2.2. <u>Spill/Overflow Protection</u>. USTs will be provided with spill and overfill prevention equipment, except where transfers are made in the amounts of 95 liters (25 gallons) or less. Where spill and over-fill protection are required, a spill containment box must be installed around the fill pipe. Overfill prevention will be provided by one of the following methods:

C19.3.2.2.1. Automatic shut-off device (set at 95% of tank capacity).

C19.3.2.2.2. High level alarm (set at 90% of tank capacity).

C19.3.2.3. <u>Leak Detection</u>. Leak detection systems must be capable of detecting a 0.38liter (0.1-gallon) per hour leak rate or a release of 568 liters (150 gallons) (or 1% of tank volume, whichever is less) within 30 days with a probability of detection of 0.95 and a probability of false alarm of not more than 0.05.

C19.3.2.3.1. USTs will use at least one of the following leak detection methods:

C19.3.2.3.1.1. Automatic tank gauging;

C19.3.2.3.1.2. Vapor monitoring;

C19.3.2.3.1.3. Groundwater monitoring; or

C19.3.2.3.1.4. Interstitial monitoring.

C19.3.2.3.2. All pressurized UST piping must be equipped with automatic line leak detectors and utilize either an annual tightness test or monthly monitoring.

C19.3.2.3.3. Suction piping will either have a line tightness test conducted every three years or use monthly monitoring.

C19.3.2.4. USTs and piping will be properly closed if not needed, or be upgraded or replaced.

C19.3.2.5. Any UST and piping not incorporating a functioning leak detection system will require immediate corrective action. Such systems will be tightness tested annually in accordance with recognized U.S. industry standards and inventoried monthly to determine system tightness.

C19.3.2.6. Any verified leaking UST or UST piping will be immediately removed from service. Any UST and piping suspected of leaking (e.g., leak detection equipment), will be verified for leakage to ensure there is not a false positive, or alternately, will immediately be removed from service. If the UST is still required, it will be repaired or replaced. If the UST is no longer required it will be removed from the ground. When a leaking UST is removed, exposed free product and/or obviously contaminated soil in the immediate vicinity of the tank will be appropriately removed and managed. Additional action will be governed by DoDI 4715.08 "Remediation of Environmental Contamination outside the United States," November 1, 2013. Under extenuating circumstances (e.g., where the UST is located under a building), the UST will be cleaned and filled with an inert substance, and left in place.

C19.3.2.7. When a UST has not been used for one year, or is determined to no longer be required, all of the product and sludges must be removed. Subsequently, the UST must be either cleaned and filled with an inert substance, or removed. UST wastes must be sampled and tested in accordance with Chapter 9, "Petroleum, Oil, and Lubricants," paragraph C9.3.3.

C19.3.2.8. When the product stored in a UST is changed, the UST must be emptied and cleaned by removing all liquid and accumulated sludge.

C19.3.2.9. When a UST system is temporarily closed, corrosion protection and leak detection systems (if the UST is not empty) must be operated and maintained. If a UST system is temporarily closed for 3 months or greater, the following must be complied with:

C19.3.2.9.1. Vent lines must be left open and functioning; and

C19.3.2.9.2. All other lines, pumps, manways, and ancillary equipment must be secured and capped.

C19.3.3. <u>UST Recordkeeping</u>. Installations will maintain a tank system inventory to include tank system installation, repair, removal, replacement, or upgrade, and operation of corrosion protection equipment for the life of the tank.

C19.3.4. Hazardous Material USTs

C19.3.4.1. All hazardous material USTs and piping must meet the same design and construction standards as required for petroleum USTs and piping, and in addition must be provided with secondary containment for both tank and piping. Secondary containment can be met by using double-walled tanks and piping, liners, or vaults.

C19.3.4.2. <u>Leak Detection</u>. The interstitial space (space between the primary and secondary containment) for tanks and piping must be monitored monthly for liquids or vapors.

C19.3.4.3. Hazardous material USTs and piping that do not incorporate the criteria contained in paragraph C19.3.4.1 shall be immediately removed from service and upgraded or replaced as necessary.

C19.3.5. <u>Deferred USTs</u>. Deferred USTs constructed after 8 May 1985 must be designed and constructed with corrosion protection, non-corrodible materials, or be otherwise designed and constructed to prevent releases from corrosion or structural failure. UST materials must be compatible with the substance(s) to be stored.

AP1. <u>APPENDIX 1</u>

<u>CHARACTERISTICS OF HAZARDOUS WASTES</u> <u>AND</u> LISTS OF HAZARDOUS WASTES AND HAZARDOUS MATERIALS

AP1.1. CHARACTERISTICS OF HAZARDOUS WASTE

AP1.1.1. General

AP1.1.1.1. A solid waste is a discarded material that may be solid, semi-solid, liquid, or that contained gas.

AP1.1.1.2. A solid waste becomes a hazardous waste when it exhibits a characteristic of a hazardous waste or is listed as a hazardous waste in this Appendix. A hazardous waste or any mixture of a solid waste and a hazardous waste that is listed solely because it exhibits one or more characteristics of ignitability, corrosivity, or reactivity, is not a hazardous waste if the waste no longer exhibits any characteristic of hazardous waste.

AP1.1.1.3. Each hazardous waste is identified by a USEPA Hazardous Waste Number (HW#). The HW# must be used in complying with the notification, recordkeeping, and reporting requirements.

AP1.1.2. Characteristic of Ignitability

AP1.1.2.1. A solid waste exhibits the characteristic of ignitability if a representative sample of the waste has any of the following properties:

AP1.1.2.1.1. It is a liquid, other than an aqueous solution containing <24% alcohol by volume and has a flash point <70°C (158°F), as determined by a Pensky-Martens Closed Cup Tester, using the test method specified in American Society for Testing and Materials (ASTM) Standard D-93-79 or D-93-80 or a Setaflash Closed Cup Tester, using the test method specified in ASTM Standard D-3278-78, or as determined by an equivalent test method.

AP1.1.2.1.2. It is not a liquid and is capable, under standard temperature and pressure, of causing fire through friction, absorption of moisture, or spontaneous chemical changes and, when ignited, burns so vigorously and persistently that it creates a hazard.

AP1.1.2.1.3. It is an ignitable compressed gas as determined by appropriate test methods or USEPA.

AP1.1.2.1.4. It is an oxidizer.

AP1.1.2.2. A solid waste that exhibits the characteristic of ignitability has the USEPA HW# D001.

AP1.1.3. Characteristic of Corrosivity

AP1.1.3.1. A solid waste exhibits the characteristic of corrosivity if a representative sample of the waste has either of the following properties:

AP1.1.3.1.1. It is aqueous and has a pH ≤ 2 , or ≥ 12.5 , as determined by a pH meter.

AP1.1.3.1.2. It is a liquid and corrodes steel (SAE 1020) at a rate >6.35 mm (0.250 inch) per year at a test temperature of 55°C (130°F) as determined by the test method specified in National Association of Corrosion Engineers (NACE) Standard TM-01-69 as standardized in "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods."

AP1.1.3.2. A solid waste that exhibits the characteristic of corrosivity has the USEPA HW# D002.

AP1.1.4. Characteristic of Reactivity

AP1.1.4.1. A solid waste exhibits the characteristic of reactivity if a representative sample of the waste has any of the following properties:

AP1.1.4.1.1. It is normally unstable and readily undergoes violent change without detonating.

AP1.1.4.1.2. It reacts violently with water.

AP1.1.4.1.3. It forms potentially explosive mixtures with water.

AP1.1.4.1.4. When mixed with water, it generates toxic gases, vapors, or fumes in a quantity sufficient to present a danger to human health or the environment.

AP1.1.4.1.5. It is a cyanide or sulfide-bearing waste which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors, or fumes in a quantity sufficient to present a danger to human health or the environment.

AP1.1.4.1.6. It is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement.

AP1.1.4.1.7. It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.

AP1.1.4.1.8. It is a forbidden explosive.

AP1.1.4.2. A solid waste that exhibits the characteristic of reactivity has the USEPA HW# D003.

AP1.1.5. <u>Toxicity Characteristic</u>

AP1.1.5.1. A solid waste exhibits the characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, the extract from a representative sample of the waste

contains any of the contaminants listed in Table AP1.T1, "Maximum Concentration of Contaminants for the Toxicity Characteristic," or section AP1.1 at the concentration \geq the respective value given in that table. Where the waste contains <0.5% filterable solids, the waste itself is considered to be the extract for the purpose of this section.

AP1.1.5.2. A solid waste that exhibits the characteristic of toxicity has the USEPA HW# specified in Table AP1.T1 or section AP1.2, which corresponds to the toxic contaminant causing it to be hazardous.

AP1.2. LISTS OF HAZARDOUS WASTES

AP1.2.1. General

AP1.2.1.1. A solid waste is a hazardous waste if it is listed in this section.

AP1.2.1.2. The basis for listing the classes or types of wastes listed employed one or more of the following Hazard Codes:

Ignitable Waste	(I)
Corrosive Waste	(C)
Reactive Waste	(R)
Toxicity Characteristic Waste	(E)
Acute Hazardous Waste	(H)
Toxic Waste	(T)

AP1.2.1.3. Each hazardous waste listed in section AP1.2 of this Appendix is assigned a USEPA HW# which precedes the name of the waste. This number must be used in complying with the notification, recordkeeping and reporting requirements of these alternate standards.

AP1.2.2. <u>Hazardous Wastes from Non-Specific Sources</u>. The solid wastes in Table AP1.T3, "Listed Hazardous Wastes from Non-Specific Sources," are listed hazardous wastes from nonspecific sources. These hazardous wastes are designated with an "F."

AP1.2.3. <u>Hazardous Wastes from Specific Sources</u>. The solid wastes listed in Table AP1.T4, annotated "K" as the first character of the USEPA Hazardous Waste No. column, are listed hazardous wastes from specific sources.

AP1.2.4. <u>Discarded Commercial Chemical Products, Off-Specification Species, Container</u> <u>Residues, and Spill Residue</u>.

AP1.2.4.1. The following materials or items are hazardous wastes if and when they are discarded or intended to be discarded when they are mixed with waste oil or used oil or other material and applied to the land for dust suppression or road treatment, when they are otherwise applied to the land in lieu of their original intended use or when they are contained in products that are applied to the land in lieu of their original intended use, or when, in lieu of their original intended use, are produced for use as (or as a component of) a fuel, distributed for use as a fuel or burned as a fuel.

AP1.2.4.1.1. Any commercial chemical product, or manufacturing chemical intermediate having the generic name listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#.

AP1.2.4.1.2. Any off-specification commercial chemical product or manufacturing chemical intermediate which, if it met specifications, would have the generic name listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#.

AP1.2.4.1.3. Any residue remaining in a container or in an inner liner removed from a container that has held any commercial chemical product or manufacturing chemical intermediate having the generic name listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#, unless the container is empty. [Comment: Unless the residue is being beneficially used or reused, or legitimately recycled or reclaimed; or being accumulated, stored, transported or treated prior to such use, re-use, recycling or reclamation, the residue to be intended for discard, and thus, a hazardous waste. An example of a legitimate re-use of the residue would be where the residue remains in the container and the container is used to hold the same commercial chemical product or manufacturing chemical intermediate it previously held. An example of the discard of the residue would be where the drum is sent to a drum reconditioner who reconditions the drum but discards the residue.]

AP1.2.4.1.4. Any residue or contaminated soil, water or other debris resulting from the cleanup of a spill into or on any land or water of any commercial chemical product or manufacturing chemical intermediate having the generic name listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#, or any residue or contaminated soil, water or other debris resulting from the cleanup of a spill into or on any land or water, of any offspecification chemical product and manufacturing chemical intermediate which, if it met specifications, would have the generic name listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#. [Comment: The phrase "commercial chemical product or manufacturing chemical intermediate having the generic name listed in..." refers to a chemical substance that is manufactured or formulated for commercial or manufacturing use which consists of the commercially pure grade of the chemical, any technical grades of the chemical that are produced or marketed, and all formulations in which the chemical is the sole active ingredient. It does not refer to a material, such as a manufacturing process waste, that contains any of the substances listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#. Where a manufacturing process waste is deemed to be a hazardous waste because it contains a substance listed in Table AP1.T4, annotated "P" or "U" as the first character in the USEPA HW#, such waste will be listed in paragraph AP1.2.2 above or will be identified as a hazardous waste by the characteristics set forth in section AP1.1 of this Appendix.].

AP1.2.4.1.5. The commercial chemical products, manufacturing chemical intermediates or off-specification commercial chemical products or manufacturing chemical intermediates referred to in Table AP1.T4, annotated "P" as the first character in the USEPA HW# are hereby identified as acute hazardous waste (H). [Comment: For the convenience of the regulated community, the primary hazardous properties of these materials have been indicated by the letters T (Toxicity), and R (Reactivity). Absence of a letter indicates that the compound is only listed for acute toxicity.] These wastes and their corresponding USEPA HW#s are listed in Table AP1.T4, annotated "P" as the first character in the USEPA HW#.

AP1.2.4.1.6. The commercial chemical products, manufacturing chemical intermediates, or off-specification commercial chemical products referred to in Table AP1.T4, paragraphs AP1.2.4.1.1 through AP1.2.4.1.4 of this section, are hereby identified as toxic wastes (T), unless otherwise designated. [Comment: For the convenience of the regulated community, the primary hazardous properties of these materials have been indicated by the letter T (Toxicity), R (Reactivity), I (Ignitability), and C (Corrosivity). Absence of a letter indicates that the compound is only listed for toxicity.]

USEPA HW No. ¹	Contaminant	CAS No. ²	Regulatory Level (mg/L)
D004	Arsenic	7440-38-2	See Table AP1.T6
D005	Barium	7440-39-3	100.0
D006	Cadmium	7440-43-2	See Table AP1.T6
D007	Chromium	7440-47-3	See Table AP1.T6
D016	2,4-D	94-75-7	10.0
D012	Endrin	72-20-8	0.02
D008	Lead	7439-92-1	See Table AP1.T6
D013	Lindane	58-89-9	0.4
D009	Mercury	7439-97-6	See Table AP1.T6
D014	Methoxychlor	72-43-5	10.0
D010	Selenium	7782-49-2	See Table AP1.T6
D011	Silver	7440-22-4	5.0
D015	Toxaphene	8001-35-2	0.5
D017	2,4,5-TP (Silvex)	93-72-1	1.0

Table AP1.T1. Maximum Concentration of Contaminants for the Toxicity Characteristic

Notes

- 1. U.S. EPA Hazardous Waste number.
- 2. Chemical Abstracts Service number.

USEPA HW No. ¹	Contaminant	CAS No. ²	Regulatory Level (mg/kg)
D018	Benzene	71-43-2	See Table AP1.T6
D019	Carbon tetrachloride	56-23-5	See Table AP1.T6
D020	Chlordane	57-74-9	0.03
D021	Chlorobenzene	108-90-7	100.0
D022	Chloroform	67-66-3	6.0
D023	o-Cresol	95-48-7	200.0
D024	m-Cresol	108-39-4	200.0
D025	p-Cresol	106-44-5	200.0
D026	Cresol		200.0
D027	1,4-Dichlorobenzene	106-46-7	7.5
D028	1,2-Dichloroethane	107-06-2	See Table AP1.T6
D029	1,1-Dichloroethylene	75-35-4	0.7
			(See Table AP1.T6 for disposal in Japan)
D030	2,4-Dinitrotoluene	121-14-2	0.13
D031	Heptachlor (and its epoxide)	76-44-8	0.008
D032	Hexachlorobenzene	118-74-1	0.13
DO33	Hexachlorobutadiene	87-68-3	0.5
DO34	Hexachloroethane	67-72-1	3.0
DO35	Methyl Ethyl Ketone	78-93-3	200.0
DO36	Nitrobenzene	98-95-3	2.0
D037	Pentachlorophenol	87-86-5	100.0
D038	Pyridine	110-86-1	5.0
D039	Tetrachloroethylene	127-18-4	See Table AP1.T6
D040	Trichloroethylene	79-01-6	See Table AP1.T6
D041	2,4,5-Trichlorophenol	95-95-4	400.0
D042	2,4,6-Trichlorophenol	88-06-2	2.0
D043	Vinyl Chloride	75-01-4	0.2

Table AP1.T2. Maximum Concentration of Contaminants for Non-Wastewater

Notes

- 1. U.S. EPA Hazardous Waste number.
- 2. Chemical Abstracts Service number.

USEPA HW No. ¹	Hazardous Waste	Hazard Code
F001	The following spent halogenated solvents used in degreasing: Tetrachloroethylene, trichloroethylene, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and chlorinated fluorocarbons; all spent solvent mixtures/blends used in degreasing containing, before use, a total of 10% or more (by volume) of one or more of the above halogenated solvents or those solvents listed in F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.	(T)
F002	The following spent halogenated solvents: tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1-trichloroethane, chlorobenzene, 1,1,2-trichloro-1,2,2-trifluoroethane, ortho-dichlorobenzene, trichlorofluoromethane, and 1,1,2-trichloroethane; all spent solvent mixtures/blends containing, before use, a total of 10% or more (by volume) of one or more of the above halogenated solvents or those listed in F001, F004, or F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.	(T)
F003	The following spent non-halogenated solvents: xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, methyl isobutyl ketone, n-butyl alcohol, cyclohexanone, and methanol; all spent solvent mixtures/blends containing, before use, only the above spent non-halogenated solvents; and all spent solvent mixtures/blends containing, before use, one or more of the above non-halogenated solvents, and, a total of 10% or more (by volume) of one or more of those solvents listed in F001, F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.	(I) ²
F004	The following spent non-halogenated solvents: cresols and cresylic acid, and nitrobenzene; all spent solvent mixtures/blends containing, before use, a total of 10% or more (by volume) of one or more of the above non-halogenated solvents or those solvents listed in F001, F002, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.	(T)
F005	The following spent non-halogenated solvents: toluene, methyl ethyl ketone, carbon disulfide, isobutanol, pyridine, benzene, 2-ethoxyethanol, and 2-nitropropane; all spent solvent mixtures/blends containing, before use, a total of 10% or more (by volume) of one or more of the above non-halogenated solvents or those solvents listed in F001, F002, or F004; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.	(I,T)
F006	Wastewater treatment sludges from electroplating operations except from the following processes: (1) sulfuric acid anodizing of aluminum; (2) tin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) aluminum or zinc-aluminum plating on carbon steel; (5) cleaning/stripping associated with tin, zinc and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum.	(T)
F007	Spent cyanide plating bath solutions from electroplating operations.	(R,T)
F008	Plating bath residues from the bottom of plating baths from electroplating operations where cyanides are used in the process.	(R,T)
F009	Spent stripping and cleaning bath solutions from electroplating operations where cyanides are used in the process.	(R,T)
F010	Quenching bath residues from oil baths from metal heat treating operations where cyanides are used in the process.	(R,T)
F011	Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations.	(R,T)
F012	Quenching wastewater treatment sludges from metal heat treating operations where cyanides are used in the process.	(T)
F019	Wastewater treatment sludges from the chemical conversion coating of aluminum except from zirconium phosphating in aluminum can washing when such phosphating is an exclusion conversion coating process.	(T)

Table AP1.T3. Listed Hazardous Wastes from Non-Specific Sources

USEPA HW No. ¹	Hazardous Waste	Hazard Code
F020	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tri-or tetrachlorophenol, or of intermediates used to produce their pesticide derivatives (this listing does not include wastes from the production of hexachlorophene from highly purified 2,4,5- trichlorophenol).	(H)
F021	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of pentachlorophenol, or of intermediates used to produce its derivatives.	(H)
F022	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-, penta-, or hexachlorobenzenes under alkaline conditions.	(H)
F023	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials on equipment previously used for the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tri- and tetrachlorophenols (this listing does not include wastes from equipment used only for the production or use of hexachlorophene from highly purified 2,4,5-trichlorophenol).	(H)
F024	Process wastes, including but not limited to, distillation residues, heavy ends, tars, and reactor clean-out wastes, from the production of certain chlorinated aliphatic hydrocarbons by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain lengths ranging from one to and including five, with varying amounts and positions of chlorine substitution (this listing does not include wastewater, wastewater treatment sludges, spent catalysts, and wastes listed separately in this table or wastes listed in Table AP1.T4 and having a USEPA HW# beginning with "K").	(T)
F025	Condensed light ends, spent filters and filter aids, and spent desiccant wastes from the production of certain chlorinated aliphatic hydrocarbons by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain lengths ranging from one to and including five, with varying amounts and positions of chlorine substitution.	(T)
F026	Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials on equipment previously used for the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-, penta-, or hexachlorobenzene under alkaline conditions.	(H)
F027	Discarded unused formulations containing tri-, tetra-, or pentachlorophenol or discarded unused formulations containing compounds derived from these chlorophenols (this listing does not include formulations containing hexachlorophene synthesized from prepurified 2,4,5-trichlorophenol as the sole component).	(H)
F028	Residues resulting from the incineration or thermal treatment of soil contaminated with USEPA HW#s F020, F021, F022, F023, F026, and F027.	(T)
F032	Wastewater (except that which has not come into contact with process contaminants), process residuals, preservative drippage, and spent formulations from wood preserving processes generated at plants that currently use or have previously used chlorophenolic formulations (except potentially cross- contaminated wastes that are otherwise currently regulated as hazardous wastes (i.e., F034 or F035), and where the generator has cleaned or replaced all process equipment that may have come into contact with chlorophenolic formulations or constituents thereof, and does not resume or initiate use of chlorophenolic formulations). This listing does not include K001 bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/or pentachlorophenol.	(T)

Table AP1.T3. Listed Hazardous Wastes from Non-Specific Sources

USEPA HW No. ¹	Hazardous Waste	Hazard Code
F034	Wastewaters (except those that have not come into contact with process contaminants), process residuals, preservative drippage, and spent formulations from wood preserving processes generated at plants that use creosote formulations. This listing does not include K001 bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/or pentachlorophenol.	(T)
F035	Wastewater (except those that have not come into contact with process contaminants), process residuals, preservative drippage, and spent formulations from wood preserving processes generated at plants that use inorganic preservatives containing arsenic or chromium. This listing does not include K001 bottom sediment sludge from the treatment of wastewater from wood preserving processes that use creosote and/or pentachlorophenol.	(T)
F037	Petroleum refinery primary oil/water/solids separation sludge: Any sludge generated from the gravitational separation of oil/water/solids during the storage or treatment of process wastewater and oily cooling wastewater from petroleum refineries. Such sludges include, but are not limited to, those generated in: oil/water/solids separators; tanks and impoundments; ditches and other conveyances; sumps; and storm water units receiving dry weather flow. Sludge generated in storm water units that do not receive dry weather flow, sludges generated from non-contact once-through cooling water segregated for treatment from other process or oily cooling water, sludges generated in activated sludge, trickling filter, rotating biological contactor, or high-rate aeration biological treatment units (including sludges generated in one or more additional units after wastewater has been treated in aggressive biological treatment units) and K051 wastes are not included in this listing.	(T)
F038	Petroleum refinery secondary (emulsified) oil/water/solids separation sludge: Any sludge and/or float generated from the physical and/or chemical separation of oil/water/solids in process wastewater and oily cooling wastewater from petroleum refineries. Such wastes include, but are not limited to, all sludges and floats generated in: induced air flotation (IAF) units, tanks and impoundments, and all sludges generated in dissolved air flotation (DAF) units. Sludges generated in storm water units that do not receive dry weather flow; sludges generated from non-contact once-through cooling waters segregated for treatment from other process or oily cooling waters; sludges and floats generated in activated sludge, trickling filter, rotating biological contactor, or high-rate aeration biological treatment units (including sludges and floats generated in one or more additional units after wastewater has been treated in aggressive biological treatment units) and F037, K048, and K051 wastes are not included in this listing.	(T)
F039	Leachate (liquids that have percolated through land disposed wastes) resulting from the disposal of more than one restricted waste listed in Tables AP1.T3 or AP1.T4 (leachate resulting from the disposal of one or more of the following USEPA hazardous wastes and no other hazardous wastes retains its USEPA HW#(s): F020, F021, F022, F026, F027, and/or F028).	(T)

Table AP1.T3.	Listed Hazardous	Wastes f	from Non-S	pecific Sources

Notes:

1. USEPA Hazardous Waste number.

2. (I,T) should be used to specify mixtures containing ignitable and toxic constituents.

Table AP1.T4. List of Hazar (All notes appear			ials	
			LICEDA	DO
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Acenaphthene	83329	Quality (Founds)	1111 110.	100
Acenaphthylene	208968			5,000
Acetaldehyde (I)	75070		U001	1,000
Acetaldehyde, chloro-	107200		P023	1,000
Acetaldehyde, trichloro-	75876		U034	5,000
Acetamide	60355			100
Acetamide, N-(aminothioxomethyl)-	591082		P002	1,000
Acetamide, N-(4-ethoxyphenyl)-	62442		U187	100
Acetamide, 2-fluoro-	640197		P057	100
Acetamide, N-9H-fluoren-2-yl-	53963		U005	1
Acetic acid	64197			5,000
Acetic acid (2,4-dichlorophenoxy)-salts and esters	94757		U240	100
Acetic acid, lead salt	301042		U144	10
Acetic acid, thallium(1+) salt	563688		U214	1000
Acetic acid, (2,4,5-trichlorophenoxy)	93765		U232	1,000
Acetic acid, ethyl ester (I)	141786		U112	5,000
Acetic acid, fluoro-, sodium salt	62748		P058	10
Acetic anhydride	108247			5,000
Acetone (I)	67641		U002	5,000
Acetone cyanohydrin	75865	1,000	P069	10
Acetone thiosemicarbazide	1752303	1,000/10,000		1
Acetonitrile (I,T)	75058		U003	5,000
Acetophenone	98862		U004	5,000
2-Acetylaminofluorene	53963		U005	1
Acetyl bromide	506967			5,000
Acetyl chloride (C,R,T)	75365		U006	5,000
1-Acetyl-2-thiourea	591082		P002	1
Acrolein	107028	500	P003	1
Acrylamide	79061	1,000/10,000	U007	5,000
Acrylic acid (I)	79107		U008	5,000
Acrylonitrile	107131	10,000	U009	100
Acrylyl chloride	814686	100		1
Adipic acid	124049			5,000
Adiponitrile	111693	1,000		1
Aldicarb	116063	100/10,000	P070	1
Aldrin	309002	500/10,000	P004	1
Alkylacrylate copolymer	27029578			
Allyl alcohol	107186	1,000	P005	100
Allylamine	107119	500		1
Allyl chloride	107051			1,000

Table AP1.T4. List of Hazard (All notes appear a)			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Aluminum phosphide (R,T)	20859738	500	P006	100
Aluminum sulfate	10043013			5,000
4-Aminobiphenyl	92671			1
5-(Aminomethyl)-3-isoxazolol	2763964		P007	1,000
Aminopterin	54626	500/10,000		1
4-Aminopyridine	504245		P008	1,000
Amiton	78535	500		1
Amiton oxalate	3734972	100/10,000		1
Amitrole	61825		U011	10
Ammonia	7664417	500		100
Ammonium acetate	631618			5,000
Ammonium benzoate	1863634			5,000
Ammonium bicarbonate	1066337			5,000
Ammonium bichromate	7789095			10
Ammonium bifluoride	1341497			100
Ammonium bisulfite	10192300			5,000
Ammonium carbamate	1111780			5,000
Ammonium carbonate	506876			5,000
Ammonium chloride	12125029			5,000
Ammonium chromate	7788989			10
Ammonium citrate, dibasic	3012655			5,000
Ammonium fluoborate	13826830			5,000
Ammonium fluoride	12125018			100
Ammonium hydroxide	1336216			1,000
Ammonium oxalate	6009707 5972736			5,000
	14258492		DOOO	10
Ammonium picrate (R)	131748		P009	10
Ammonium silicofluoride	16919190			1,000
Ammonium sulfamate	7773060			5,000
Ammonium sulfide	12135761			100
Ammonium sulfite	10196040			5,000
Ammonium tartrate	14307438 3164292			5,000
Ammonium thiocyanate	1762954			5,000
Ammonium vanadate	7803556		P119	1,000
Amphetamlne	300629	1,000		1
Amyl acetate	628637			5,000
Iso-Amyl acetate	123922			
Sec-Amyl acetate	626380			
Tert-Amyl acetate	625161			
Aniline (I,T)	62533	1,000	U012	5,000

Table AP1.T4. List of Haz (All notes appe	ardous Waste/ ar at the end of th		ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Aniline, 2,4,6- trimethyl	88051	500		1
o-Anisidine	90040			100
Anthracene	120127			5,000
Antimony++	7440360			5,000
Antimony pentachloride	7647189			1,000
Antimony pentafluoride	7783702	500		1
Antimony potassium tartrate	28300745			100
Antimony tribromide	7789619			1,000
Antimony trichloride	10025919			1,000
Antimony trifluoride	7783564			1,000
Antimony trioxide	1309644			1,000
Antimycin A	1397940	1,000/10,000		1
ANTU (Thiourea 1-Naphthalenyl)	86884	500/10,000		100
Argentate(1-), bis(cyano-C)-, potassium	506616	,	P099	1
Aroclor 1016	12674112			1
Aroclor 1221	11104282			1
Aroclor 1232	11141165			1
Aroclor 1242	53469219			1
Aroclor 1248	12672296			1
Aroclor 1254	11097691			1
Aroclor 1260	11096825			1
Aroclors	1336363			1
Arsenic++	7440382			1
Arsenic acid (H ₃ AsO ₄)	1327522 7778394		P010	1
Arsenic disulfide	1303328			1
Arsenic oxide (As ₂ O ₃)	1327533		P012	1
Arsenic oxide (As ₂ O ₅)	1303282		P011	1
Arsenic pentoxide	1303282	100/10,000	P011	1
Arsenic trichloride	7784341	100,10,000	1011	1
Arsenic trioxide	1327533		P012	1
Arsenic trisulfide	1303339		1 012	1
Arsenous oxide	1327533	100/10,000	P012	1
Arsenous trichloride	7784341	500	1.012	5,000
Arsine	7784421	100		1
Arsine, diethyl-	692422	100	P038	1
Arsinic acid, dimethyl-	75605		U136	1
Arsorous dichloride, phenyl-	696286		P036	1
Asbestos+++	1332214		1050	1
Auramine	492808		U014	100
Azaserine	115026		U014	1

Table AP1.T4. List of Hazardo (All notes appear at			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Aziridine	151564		P054	1
Azindine, 2-methyl-	75558		P067	1
Azirino[2',3',3,4]pyrrolo[1,2-a]indole-4, 7-dione,6-amino- 8-[[aminocarbonylooxy) methyl]-1,1a,2,8,8a,8b- hexahydro-8a-methoxy-5-methyl-,[1aS-(1a-alpha, 8-beta, 8a-alpha, 8b-alpha)]-	50077		U010	10
Azinphos-ethyl	2642719	100/10,000		100
Azinphos-methyl	86500	10/10,000		1
Barium cyanide	542621		P013	10
Benz[j]aceanthrylene, 1,2-dihydro-3-methyl-	56495		U157	10
Benz[c]acridine	225514		U016	100
Benzal chloride	98873	500	U017	5,000
Benzamide, 3,5-dichloro-N-(1,1-dimethyl-2-propynyl)-	23950585		U192	5,000
Benz[a]anthracene	56553		U018	10
1,2-Benzanthracene	56553		U018	10
Benz[a]anthracene, 7,12-dimethyl-	57976		U094	1
Benzenamine (I,T)	62533		U012	5,000
Benzenamine, 3-(Trifluoromethyl)	98168	500		1
Benzenamine, 4,4'-carbonimidoylbis (N,N-dimethyl-	492808		U014	100
Benzenamine, 4-chloro-	106478		P024	1,000
Benzenamine, 4-chloro-2-methyl-, hydrochloride	3165933		U049	100
Benzenamine, N,N-dimethyl-4-(phenylazo-)	60117		U093	10
Benzenamine, 2-methyl-	95534		U328	100
Benzenamine, 4-methyl-	106490		U353	100
Benzenamine, 4,4'-methylenebis(2-chloro-	101144		U158	10
Benzenamine, 2-methyl-, hydrochloride	636215		U222	100
Benzenamine, 2-methyl-5-nitro-	99558		U181	100
Benzenamine, 4-nitro-	100016		P077	5,000
Benzene (I,T)	71432		U019	10
Benzene, 1-(Chloromethyl)-4-Nitro-	100141	500/10,000		1
Benzeneacetic acid, 4-chloro-alpha- (4-chlorophenyl)- alpha-hydroxy-, ethyl ester	510156		U038	10
Benzene, 1-bromo-4-phenoxy-	101553		U030	100
Benzenearsonic Acid	98055	10/10,000		1
Benzenebutanoic acid, 4-[bis(2-chloroethyl)amino]-	305033		U035	10
Benzene, chloro-	108907		U037	100
Benzene, chloromethyl-	100447		P028	100
Benzenediamin, ar-methyl-	25376458 95807 496720 823405		U221	10
1,2-Benzenedicarboxylic acid, dioctyl ester	117840		U107	5,000

Table AP1.T4. List of Hazardous Waste/Substances/Materials				
(All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
1,2-Benzenedicarboxylic acid, [bis(2-ethylhexyl)]-ester	117817		U028	100
1,2-Benzenedicarboxylic acid, dibutyl ester	84742		U069	10
1,2-Benzenedicarboxylic acid, diethyl ester	84662		U088	1,000
1,2-Benzenedicarboxylic acid, dimethyl ester	131113		U102	5,000
Benzene, 1,2-dichloro-	95501		U070	100
Benzene, 1,3-dichloro-	541731		U071	100
Benzene, 1,4-dichloro-	106467		U072	100
Benzene, 1,1'-(2,2-dichloroethylidene)bis[4-chloro-	72548		U060	1
Benzene, dichloromethyl-	98873		U017	5,000
Benzene, 1,3-diisocyanotomethyl-(R,T)	584849 91087 264716254		U223	100
Benzene, dimethyl (I,T)	1330207		U239	100
m-Benzene, dimethyl	108383			1,000
o-Benzene, dimethyl	95476			1,000
p-Benzene, dimethyl	106423			100
1,3-Benzenediol	108463		U201	5,000
1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- (R) -	51434		P042	1,000
Benzeneethanamine, alpha, alpha-dimethyl-	122098		P046	5,000
Benzene, hexachloro-	118741		U127	10
Benzene, hexahydro- (I)	110827		U056	1,000
Benzene, hydroxy-	108952		U188	1,000
Benzene, methyl-	108883		U220	1,000
Benzene, 2-methyl-1,3-dinitro-	606202		U106	100
Benzene, 1-methyl-2,4-dinitro-	121142		U105	10
Benzene, 1-methylethyl-(I)	98828		U055	5,000
Benzene, nitro-	98953		U169	1,000
Benzene, pentachloro-	608935		U183	10
Benzene, pentachloronitro-	82688		U185	100
Benzenesulfonic acid chloride (C,R)	98099		U020	100
Benzenesulfonyl chloride	98099		U020	100
Benzene, 1,2,4,5-tetrachloro-	95943		U207	5,000
Benzenethiol	108985		P014	100
Benzene, 1,1'-(2,2,2-tri-chloroethylidene)bis[4-chloro-	50293		U061	1
Benzene, 1,1'-(2,2,2-trichloroethylidene) bis[4-methoxy-	72435		U247	1
Benzene, (trichloromethyl)-	98077		U023	10
Benzene, 1,3,5-trinitro-	99354		U234	10
Benzidine	92875		U021	1
Benzimidazole, 4,5-Dichloro-2-(Trifluoromethyl)-	3615212	500/10,000		1
1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide	81072		U202	100
Benzo[a]anthracene	56553		U018	10

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Benzo[b]fluoranthene	205992			1
Benzo[k]fluoranthene	207089			5,000
Benzo[j,k]fluorene	206440		U120	100
1,3-Benzodioxole, 5-(1-propenyl)-	120581		U141	100
1,3-Benzodioxole, 5-(2-propenyl)-	94597		U203	100
1,3-Benzodioxole, 5-propyl-	94586		U090	10
Benzoic acid	65850			5,000
Benzonitrile	100470			5,000
Benzo[rst]pentaphene	189559		U064	10
Benzo[ghi]perylene	191242			5,000
2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenyl- butyl)-, & salts, when present at concentrations >0.3%	81812		P001	100
Benzo[a]pyrene	50328		U022	1
3,4-Benzopyrene	50328		U022	1
p-Benzoquinone	106514		U197	10
2-(2 H-1, 2, 3/-Benzotriazol-2-yl)-4, 6-di- tert- butylphenol	3846717			
Benzotrichloride (C,R,T)	98077	500	U023	10
Benzoyl chloride	98884			1,000
1,2-Benzphenanthrene	218019		U050	100
Benzyl chloride	100447	500	P028	100
Benzyl cyanide	140294	500		1
Beryllium++	7440417		P015	10
Beryllium chloride	7787475			1
Beryllium fluoride	7787497			1
Beryllium nitrate	13597994 7787555			1
alpha-BHC	319846			10
beta-BHC	319857			1
delta-BHC	319868			1
gamma-BHC	58899		U129	1
Bicyclo [2,2,1]Heptane-2-carbonitrile, 5-chloro-6- (((Methylamino)Carbonyl) Oxy)Imino)-,(1s-(1-alpha, 2- beta, 4-alpha, 5-alpha, 6E))-	15271417	500/10,000		1
2,2'-Bioxirane	1464535		U085	10
Biphenyl	92524			100
(1,1'-Biphenyl)-4,4'diamine	92875		U021	1
(1,1'-Biphenyl)-4,4'diamine, 3,3'dichloro-	91941		U073	1
(1,1'-Biphenyl)-4,4'diamine, 3,3'dimethoxy-	119904		U091	10
(1,1'-Biphenyl)-4,4'diamine, 3,3'dimethyl-	119937		U095	10
Bis(chloromethyl) ketone	534076	10/10,000		1
Bis(2-chloroethyl)ether	111444		U025	10

Table AP1.T4. List of Hazardo (All notes appear at			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Bis(2-chloroethoxy)methane	111911		U024	1,000
Bis(2-ethylhexyl)phthalate	117817		U028	100
Bitoscanate	4044659	500/10,000		1
Bis (tributyltin) oxide	56359			
Boron trichloride	10294345	500		1
Boron trifluoride	7637072	500		1
Boron trifluoride compound with methyl ether (1:1)	353424	1,000		1
Bromoacetone	598312		P017	1,000
Bromadiolone	28772567	100/10,000		1
Bromine	7726956	500		1
Bromoform	75252		U225	100
4-Bromophenyl phenyl ether	101553		U030	100
Brucine	357573		P018	100
1,3-Butadiene	106990			10
1,3-Butadiene, 1,1,2,3,4,4-hexachloro-	87683		U128	1
1-Butanamine, N-butyl-N-nitroso-	924163		U172	10
1-Butanol	71363		U031	5,000
2-Butanone	78933		U159	5,000
2-Butanone peroxide (R,T)	1338234		U160	10
2-Butanone, 3,3-dimethyl-1-(methylthio)-, O[(methylamno)carbonyl] oxime	39196184		P045	100
2-Butenal	123739 4170303		U053	100
2-Butene, 1,4-dichloro-(I,T)	764410		U074	1
2-Butenoic acid, 2-methyl-, 7[[2,3-dihydroxy-2-(1-meth- oxyethyl)-3-methyl-1-oxobutoxy] methyl]-2,3,5,7a- tetrahydro-1H-pyrrolizin-1-yl ester, [1S-[1- alpha(Z),7(2S*,3R*), 7a-alpha]]-	303344		U143	10
Butyl acetate	123864			5,000
iso-Butyl acetate	110190			
sec-Butyl acetate	105464			
tert-Butyl acetate	540885			
n-Butyl alcohol (I)	71363		U031	5,000
Butylamine	109739			1,000
iso-Butylamine	78819			
sec-Butylamine	513495			
tert-Butylamine	13952846 75649			
Butyl benzyl phthalate	85687			100
n-Butyl phthalate	84742		U069	10
Butyric acid	107926			5,000
iso-Butyric acid	79312			

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
(All notes appear at			LICEDA	DO
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Cacodylic acid	75605	Quality (Founds)	U136	1
Cadmium++	7440439			10
Cadmium acetate	543908			10
Cadmium bromide	7789426			10
Cadmium chloride	10108642			10
Cadmium oxide	1306190	100/10,000		1
Cadmium stearate	2223930	1,000/10,000		1
Calcium arsenate	7778441	500/10,000		1
Calcium arsenite	52740166			1
Calcium carbide	75207			10
Calcium chromate	13765190		U032	10
Calcium cyanamide	156627			1,000
Calcium cyanide Ca(CN) ₂	592018		P021	10
Calcium dodecylbenzenesulfonate	26264062			1,000
Calcium hypochlorite	7778543			10
Camphechlor	8001352	500/10,000		1
Camphene, octachloro-	8001352		P123	1
Cantharidin	56257	100/10,000		1
Carbachol chloride	51832	500/10,000		1
Captan	133062			10
Carbamic acid, ethyl ester	51796		U238	100
Carbamic acid, methylnitroso-, ethyl ester	615532		U178	1
Carbamic acid, Methyl-, 0-(((2,4-Dimethyl-1, 3- Dithiolan-2-yl)Methyllene)Amino)-	26419738	100/10,000		1
Carbamic chloride, dimethyl-	79447		U097	1
Carbamodithioic acid, 1,2-ethaneiylbis, salts & esters	111546		U114	5,000
Carbamothioic acid, bis(1-methylethyl)-, S-(2,3-dichloro- 2-propenyl) ester	2303164		U062	100
Carbaryl	63252			100
Carbofuran	1563662	10/10,000		10
Carbon disulfide	75150	10,000	P022	100
Carbon oxyfluoride (R,T)	353504		U033	1,000
Carbon tetrachloride	56235		U211	10
Carbonic acid, dithallium salt	6533739		U215	100
Carbonic dichloride	75445		P095	10
Carbonic difluoride	353504		U033	1,000
Carbonochloridic acid, methyl ester	79221		U156	1,000
Carbonyl Sulfide	463581			100
Carbophenothion	786196	500		1
Catechol	120809			100
Chloral	75876		U034	5,000

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Chlorambem	133904			100
Chlorambucil	305033		U035	10
Chlordane	57749	1,000	U036	1
Chlordane, alpha & gamma isomers	57749		U036	1
Chlordane, technical	57749		U036	1
Chlorfenvinfos	470906	500		1
Chlorinated champhene (Campheclor)	8001352			1
Chlorine	7782505	100		10
Chlormephos	24934916	500		1
Chlormequat chloride	999815	100/10,000		1
Chlornaphazine	494031		U026	100
Choroacetaldehyde	107200		P023	1,000
Chloroacetophenone	532274			100
Chloroacetic acid	79118	100/10,000		100
p-Chloroaniline	106478	100/10,000	P024	1,000
Chlorobenzene	108907		U037	1,000
Chlorobenzilate	510156		U038	100
p-Chloro-m-cresol (4)	59507		U039	5,000
1-Chloro-2,3-epoxypropane	106898		U041	100
Chlorodibromomethane	124481		0011	100
Chloroethane	75003			100
Chloroethanol	107073	500		1
Chloroethyl chlorofomate	627112	1,000		1
2-Chloroethyl vinyl ether	110758	1,000	U042	1,000
Chloroform	67663	10,000	U044	1,000
Chloromethane	74873	10,000	U045	100
Chloromethyl ether	542881	100	P016	1
Chloromethyl methyl ether	107302	100	U046	10
beta-Chloronaphthalene	91587	100	U047	5,000
2-Chloronaphthalene	91587		U047	5,000
Chlorophacinone	3691358	100/10,000	0047	1
o-Chlorophenol (2)	95578	100/10,000	U048	100
4-Chlorophenyl phenyl ether	7005723		0040	5,000
1-(o-Chlorophenyl)thiourea	5344821		P026	100
Chloroprene	126998		1 020	100
3-Chloropropionitrile	542767		P027	1,000
Chlorosulfonic acid	7790945		102/	1,000
4-Chloro-o-toluidine, hydrochloride	3165933		U049	1,000
Chlorpyrifos	2921882		0049	100
Chloroxuron	1982474	500/10,000		1
Chlorthiophos	21923239	500		
Cinorunopilos	21923239	300		1

Hazardous Waste/Substance/Material CA	AS No. 1	Threshold Planning		
Trazardous w aster substance/ material CA	IS INU.	Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Chromic acetate 100	066304			1,000
	115745 738945			10
Chromic acid H ₂ CrO ₄ , calcium salt 137	765190		U032	10
Chromic chloride (Chromium chloride) 100	025737	1/10,000		1
Chromic sulfate 101	101538			1,000
Chromium++ 744	40473			5,000
Chromous chloride 100	049055			1,000
Chrysene 21	18019		U050	100
	207765	100/10,000		1
Cobaltous bromide 775	789437			1,000
Cobalt carbonyl 102	210681	10/10,000		1
Cobaltous formate 54	44183			1,000
Cobaltous sulfamate 140	017415			1,000
Coke Oven Emissions	NA			1
Colchicine 64	54868	10/10,000		1
Copper++ 744	40508			5,000
Copper cyanide 54	44923		P029	10
	56724	100/10,000		10
Coumatetralyl 58	336293	500/10,000		1
Creosote 80	001589		U051	1
Cresol(s) (Phenol, Methyl) 13	319773		U052	100
m-Cresol 10	08394	1,000/10,000		100
o-Cresol 9:	95487			100
p-Cresol 10	06445			100
Cresylic acid 13	319773		U052	100
m-Cresylic acid 10	08394			100
o-Cresylic acid 9	95487			100
p-Cresylic acid 10	06445			100
Crimidine 53	35897	100/10,000		1
	23739 70303	1,000	U053	100
Cumene (I) 99	98828		U055	5,000
	42712			100
	002038			1
Cupric chloride 74	47394			10
	251238			100
	393663			100
*	758987			10
Cupric sulfate, ammoniated 103	380297			100

Table AP1.T4. List of Hazardo (All notes appear at			als	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Cupric tartrate	815827			100
Cyanides (soluble salts and complexes) not otherwise specified	57125		P030	10
Cyanogen	460195		P031	100
Cyanogen bromide	506683	500/10,000	U246	1,000
Cyanogen chloride	506774		P033	10
Cyanogen iodide (Iodine cyanide)	506785	1,000/10,000		1
Cyanophos	2636262	1,000		1
Cyanuric fluoride	675149	100		1
2,5-Cyclohexadiene-1,4-dione	106514		U197	10
Cyclohexane (I)	110827		U056	1,000
Cyclohexane, 1,2,3,4,5,6-hexachloro, (1-alpha, 2-alpha, 3-beta, 4-alpha, 5-alpha, 6-beta)-	58899		U129	1
Cyclohexanone (I)	108941		U057	5,000
2-Cyclohexanone	131895		P034	100
Cycloheximide	66819	100/10,000		1
Cyclohexylamine	108918	10,000		1
1,3-Cyclopentadiene, 1,2,3,4,5,5-hexachloro-	77474		U130	10
Cyclophosphamide	50180		U058	10
2,4-D Acid	94757		U240	100
2,4-D Ester	94111			100
	94791			
	94804			
	1320189 1928387			
	1928587			
	1929733			
	2971382			
	25168267			
	53467111		110.40	100
2,4-D, salts & esters (2,4-Dichlorophenoxyacetic Acid)	94757		U240	100
	20830813		U059	10
Decachloropentacyclo [5. 3. 0. 0 ^{2, 6} . 0 ^{3, 9} . 0 ^{4, 8}] decan-5- one (Chlordecone)	143500			
Decarborane(14)	17702419	500/10,000		1
Demeton	8065483	500		1
Demeton-S-Methyl	919868	500		1
DDD, 4,4'DDD	72548		U060	1
DDE, 4,4'DDE	72559			1
DDT, 4,4'DDT	50293		U061	1
DEHP (Diethylhexyl phthalate)	117817		U028	100
Diallate	2303164		U062	100
Dialifor	10311849	100/10,000		1

Table AP1.T4. List of Hazard (All notes appear a)			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Diazinon	333415			1
Diazomethane	334883			100
Dibenz[a,h]anthracene	53703		U063	1
1,2:5,6-Dibenzanthracene	53703		U063	1
Dibenzo[a,h]anthracene	53703		U063	1
Dibenzofuran	132649			100
Dibenz[a,i]pyrene	189559		U064	10
1,2-Dibromo-3-chloropropane	96128		U066	1
Dibromoethane	106934		U067	1
Diborane	19287457	100		1
Dibutyl phthalate	84742		U069	10
Di-n-butyl phthalate	84742		U069	10
Dicamba	1918009			1,000
Dichlobenil	1194656			100
Dichlone	117806			1
Dichlorobenzene	25321226			100
m-Dichlorobenzene (1,3)	541731		U071	100
o-Dichlorobenzene (1,2)	95501		U070	100
p-Dichlorobenzene (1,4)	106467		U072	100
3,3'-Dichlorobenzidine	91941		U073	1
Dichlorobromomethane	75274			5,000
1,4-Dichloro-2-butene (I,T)	764410		U074	1
Dichlorodifluoromethane	75718		U075	5,000
1,1-Dichloroethane	75343		U076	1,000
1,2-Dichloroethane	107062		U077	100
1,1-Dichloroethylene	75354		U078	100
1,2-Dichloroethylene	156605		U079	1,000
Dichloroethyl ether	11444	10,000	U025	10
Dichloroisopropyl ether	108601		U027	1,000
Dichloromethoxy ethane	111911		U024	1,000
Dichloromethyl ether	542881		P016	10
Dichloromethylphenylsilane	149746	1,000		1
2,4-Dichlorophenol	120832		U081	100
2,6-Dichlorophenol	87650		U082	100
Dichlorophenylarsine	696286		P036	1
Dichloropropane	26638197			1,000
1,1-Dichloropropane	78999			
1,3-Dichloropropane	142289			
1,2-Dichloropropane	78875		U083	1,000
DichloropropaneDichloropropene (mixture)	8003198			100
Dichloropropene	26952238			100

Table AP1.T4. List of Hazardo (All notes appear at			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
2,3-Dichloropropene	78886			
1,3-Dichloropropene	542756		U084	100
2,2-Dichloropropionic acid	75990			5,000
Dichlorvos	62737	1,000		10
Dicofol	115322			10
Dicrotophos	141662	100		1
Dieldrin	60571		P037	1
1,2:3,4-Diepoxybutane (I,T)	1464535	500	U085	10
Diethanolamine	111422			100
Diethyl chlorophosphate	814493	500		1
Diethylamine	109897			1,000
Diethylarsine	692422		P038	1
Diethylcarbmazine citrate	1642542	100/10,000		1
1,4-Diethylenedioxide	123911	· · · · · ·	U108	100
Diethylhexyl phthalate	117817		U028	100
N,N-Diethylaniline	91667			1,000
N,N'-Diethylhydrazine	1615801		U086	10
O,O-Diethyl S-methyl dithiophosphate	3288582		U087	5,000
Diethyl-p-nitrophenyl phosphate	311455		P041	100
Diethyl phthalate	84662		U088	1,000
O,O-Diethyl O-pyrazinyl phosphorothioate	297972		P040	100
Diethylstilbestrol	56531		U089	1
Diethyl sulfate	64675			10
Digitoxin	71636	100/10,000		1
Diglycidyl ether	2238075	1,000		1
Digoxin	20830755	10/10,000		1
Dihydrosafrole	94586		U090	10
Diisopropyfluorophosphate	55914		P043	100
Diisopropylfluorophosphate, 1,4,5,8- Dimethanonaphthalene, 1,2,3,4,10,10-10-hexachloro- 1,4,4a,5,8,8a-hexahydro-, (1-alpha, 4-alpha, 4a-beta, 5- alpha, 8-alpha, 8a-beta)-	309002		P004	1
1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexachloro- 1,4,4a,5,8,8a-hexahydro, (1-alpha, 4-alpha, 4a-beta, 5a- beta, 8-beta, 8a-beta)-	465736		P060	1
2,7:3,6-Dimethanonaphth[2,3 b]oxirene,3,4,5,6,9,9- hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-,(1a-alpha, 2- beta, 2a-alpha, 3-beta, 6-beta, 6a-alpha, 7beta, 7aalpha)-	60571		P037	1
2,7:3,6 Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9- hexachloro-1a,2,2a,3,6,6a,7,7a-octa-hydro-, (1a-alpha, 2- beta, 2a-beta, 3-alpha, 6-alpha, 6a-beta, 7-beta, 7a-alpha)-	72208		P051	1
Dimethoate	60515		P044	10
3,3'-Dimethoxybenzidine	119904		U091	10

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Dimefox	115264	500		1
Dimethoate	60515	500/10,000		10
Dimethyl Phosphorochloridothioate	2524030	500		1
Dimethyl sulfate	77781	500		100
Dimethylamine (I)	124403		U092	1,000
p-Dimethylaminoazobenzene	60117		U093	10
7,12-Dimethylbenz[a]anthracene	57976		U094	1
3,3'-Dimethylbenzidine	119937		U095	10
alpha,alpha-Dimethylbenzylhydroperoxide(R)	80159		U096	10
Dimethylcarbamoyl chloride	79447		U097	1
Dimethylformamide	68122			100
Dimethyldichlorosilane	75785	500		1
1,1-Dimethylhydrazine	57147	1,000	U098	10
1,2-Dimethylhydrazine	540738		U099	1
alpha, alpha-Dimethylphenethylamine	122098		P046	5,000
Dimethyl-p-phenylenediamine	99989	10/10,000		1
2,4-Dimethylphenol	105679		U101	100
Dimethyl phthalate	131113		U102	5,000
Dimethyl sulfate	77781		U103	100
Dimetilan	644644	500/10,000		1
Dinitrobenzene (mixed)	25154545			100
m-Dinitrobenzene	99650			
o-Dinitrobenzene	528290			
p-Dinitrobenzene	100254			
4,6-Dinitro-o-cresol and salts	534521	10/10,000	P047	10
Dinitrophenol	25550587	,		10
2,5-Dinitrophenol	329715			-
2,6-Dinitrophenol	573568			
2,4-Dinitrophenol	51285		P048	10
Dinitrotoluene	25321146			10
3,4-Dinitrotoluene	610399			10
2,4-Dinitrotoluene	121142		U105	10
2,6-Dinitrotoluene	606202		U106	100
Dinoseb	88857	100/10,000	P020	1,000
Dinoterb	1420071	500/10,000		1,000
Di-n-octyl phthalate	117840		U107	5,000
1,4-Dioxane	123911		U108	100
Dioxathion	78342	500		1
Diphacinone	82666	10/10,000		1
1,2-Diphenylhydrazine	122667		U109	10
Diphosphoramide, octamethyl-	152169	100	P085	100

Table AP1.T4. List of Hazardous Waste/Substances/Materials				
(All notes appear at	the end of th			
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Diphosphoric acid, tetraethyl ester	107493		P111	10
Dipropylamine	142847		U110	5,000
Di-n-propylnitrosamine	621647		U111	10
Diquat	85007			1,000
	2764729			
Disulfoton	298044	500	P039	1
Dithiazanine iodide	514738	500/10,000		1
Dithiobiuret	541537	100/10,000	P049	100
N, N'- Ditolyl-p-phenylenediamine, N- Tolyl-N'-xylyl-p- phenylenediamine, or N, N'-Dixylyl -p-phenylenediamine	27417409			
Diuron	330541			100
Dodecachloropentacyclo [5.3.0.0 ^{2,6} .0 ^{3,9} .0 ^{4,8}] decane (Mirex)	2385855			
Dodecylbenzenesulfonic acid	27176870			1,000
Emetine, Dihydrochloride	316427	1/10,000		1
Endosulfan	115297	10/10,000	P050	1
alpha-Endosulfan	959988	10,10,000	1000	1
beta-Endosulfan	33213659			1
Endosulfant sulfate	1031078			1
Endothall	145733		P088	1,000
Endothion	2778043	500/10,000		1
Endrin	72208	500/10,000	P051	1
Endrin aldehyde	7421934			1
Endrin & metabolites	72208		P051	1
Epichlorohydrin	106898	1,000	U041	100
Epinephrine	51434	2	P042	1,000
EPN	2104645	100/10,000		1
1,2-Epoxybutane	106887			100
Ergocalciferol	50146	1,000/10,000		1
Ergotamine tartrate	379793	500/10,000		1
Ethanal	75070	,	U001	1,000
Ethanamine, N-ethyl-N-nitroso-	55185		U174	1
1,2-Ethanediamine, N,N-dimethyl-N'-2-pyridinyl-N'-(2-	91805		U155	5,000
thienylmethyl)-				,
Ethane, 1,2-dibromo-	106934		U067	1
Ethane, 1,1-dichloro-	75343		U076	1,000
Ethane, 1,2-dichloro-	107062		U077	100
Ethanedinitrile	460195		P031	100
Ethane, hexachloro-	67721		U131	100
Ethane, 1,1'-[methylenebis(oxy)]bis(2-chloro-	111911		U024	1,000
Ethane, 1,1'-oxybis-	60297		U117	100
Ethane, 1,1'-oxybis(2-chloro-	111444		U025	10

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Ethane, pentachloro-	76017		U184	10
Ethanesulfonyl chloride, 2-chloro	1622328	500		1
Ethane, 1,1,1,2-tetrachloro-	630206		U208	100
Ethane, 1,1,2,2-tetrachloro-	79345		U209	100
Ethanethioamide	62555		U218	10
Ethane, 1,1,1-trichloro-	71556		U226	1,000
Ethane, 1,1,2-trichloro-	79005		U227	100
Ethanimidothioic acid, N-[[(methylamino) carbonyl]oxy]-, methyl ester	16752775		P066	100
Ethanol, 1,2-Dichloro-, acetate	10140871	1,000		1
Ethanol, 2-ethoxy-	110805		U359	1,000
Ethanol, 2,2'-(nitrosoimino)bis-	1116547		U173	1
Ethanone, 1-phenyl-	98862		U004	5,000
Ethene, chloro-	75014		U043	1
Ethene, 2-chloroethoxy-	110758		U042	1,000
Ethene, 1,1-dichloro-	75354		U078	100
Ethene, 1,2-dichloro- (E)	156605		U079	1,000
Ethene, tetrachloro-	127184		U210	100
Ethene, trichloro-	79016		U228	100
Ethion	563122	1,000		10
Ethoprophos	13194484	1,000		1
Ethyl acetate (I)	141786		U112	5,000
Ethyl acrylate (I)	140885		U113	1,000
Ethylbenzene	100414			1,000
Ethylbis(2-Chloroethyl)amine	538078	500		1
Ethyl carbamate (urethane)	51796		U238	100
Ethyl chloride	75003			100
Ethyl cyanide	107120		P101	10
Ethylenebisdithiocarbamic acid, salts & esters	111546		U114	5,000
Ethylenediamine	107153			5,000
Ethylenediamine-tetraacetic acid (EDTA)	60004			5,000
Ethylene dibromide	106934		U067	1
Ethylene dichloride	107062		U077	100
Ethylene fluorohydrin	371620	10		1
Ethylene glycol	107211			5,000
Ethylene glycol monoethyl ether	110805		U359	1,000
Ethylene oxide (I,T)	75218	1,000	U115	10
Ethylenediamine	107153	10,000		5,000
Ethylenethiourea	96457		U116	10
Ethyleneimine	151564	500	P054	1
Ethyl ether (I)	60297		U117	100

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Ethylthiocyanate	542905	10,000		1
Ethylidene dichloride	75343		U076	1,000
Ethyl methacrylate	97632		U118	1,000
Ethyl methanesulfonate	62500		U119	1
Famphur	52857		P097	1,000
Fenamlphos	22224926	10/10,000		1
Fenltrothion	122145	500		1
Fensulfothion	115902	500		1
Ferric ammonium citrate	1185575			1,000
Ferric ammonium oxalate	2944674 55488874			1,000
Ferric chloride	7705080			1,000
Ferric fluoride	7783508			100
Ferric nitrate	10421484			1,000
Ferric sulfate	10028225			1,000
Ferrous ammonium sulfate	10045893			1,000
Ferrous chloride	7758943			100
Ferrous sulfate	7720787 7782630			1,000
Fluenetil	4301502	100/10,000		1
Fluoranthene	206440		U120	100
Fluorene	86737			5,000
Fluorine	7782414	500	P056	10
Fluoroacetamide	640197	100/10,000	P057	100
Fluoracetic acid	144490	10/10,000		1
Fluoroacetic acid, sodium salt	62786		P058	10
Fluoroacetyl chloride	359068	10		1
Fluorouracil	51218	500/10,000		1
Fonofos	944229	500		1
Formaldehyde	50000	500	U122	100
Formaldehyde cyanohydrin	107164	1,000		1
Formetanate hydrochloride	23422539	500/10,000		1
Formothion	2540821	100		1
Formparanate	17702577	100/10,000		1
Formic acid (C,T)	64186		U123	5,000
Fosthletan	21548323	500		1
Fubendazole	3878191	100/10,000		1
Fulminic acid, mercury(2-) salt (R,T)	628864		P065	10
Fumaric acid	110178			5,000
Furan (I)	110009	500	U124	100
Furan, tetrahydro-(I)	109999		U213	1,000

Table AP1.T4. List of Hazard (All notes appear a			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
2-Furancarboxaldehyde (I)	98011		U125	5,000
2,5-Furandione	108316		U147	5,000
Furfural (I)	98011		U125	5,000
Furfuran (I)	110009		U124	100
Gallium trichloride	13450903	500/10,000		1
Glucopyranose, 2-deoxy-2-(3-methyl-3-nitrosoureido)-	18883664		U206	1
D-Glucose, 2-deoxy-2-[[(methylnitrosoamino)- carbonyl]amino]-	18883664		U206	1
Glycidylaldehyde	765344		U126	10
Glycol ethers ⁴				
Guanidine, N-methyl-N'-nitro-N-nitroso-	70257		U163	10
Guthion	86500			1
Heptabromodiphenylether (heptabromo phenoxybenzene) 446255227 207122165			
Heptachlor	76448		P059	1
Heptachlor epoxide	1024573			1
Hexabromobiphenyl	36355018			
Hexabromodiphenylether (hexabromo phenoxybenzene)	36483600			
Hexachlorobenzene	118741		U127	10
Hexachlorobutadiene	87683		U128	1
Hexachlorocyclohexane (alpha isomer)	319846			10
Hexachlorocyclohexane (beta isomer)	319857			
Hexachlorocyclohexane (gamma isomer)	58899		U129	1
Hexachlorocyclopentadiene	77474	100	U130	10
Hexachloroethane	67721		U131	100
Hexachlorophene	70304		U132	100
Hexachloropropene	1888717		U243	1,000
Hexaethyl tetraphosphate	757584		P062	100
Hexamethylene-1, 6-diisocyanate	822060			100
Hexamethylphosphoramide	680319			1
Hexamethylenediamine, N,N'-Dibutyl	4835114	500		1
Hexane	110543			5,000
Hexone (Methyl isobutyl ketone)	108101		U161	5,000
Hydrazine (R,T)	302012	1,000	U133	1
Hydrazine, 1,2-diethyl-	1615801		U086	10
Hydrazine, 1,1-dimethyl-	57147		U098	10
Hydrazine, 1,2-dimethyl-	540738		U099	1
Hydrazine, 1,2-diphenyl-	122667		U109	10
Hydrazine, methyl-	60344		P068	10
Hydrazinecarbothioamide	79196		P116	100
Hydrochloric acid	7647010			5,000
Hydrocyanic acid	74908	100	P063	10

Table AP1.T4. List of Hazard			ials	
(All notes appear a				7.0
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Hydrofluoric acid	7664393		U134	100
Hydrogen chloride (gas only)	7647010	500		5,000
Hydrogen cyanide	74908		P063	10
Hydrogen fluoride	7664393	100	U134	100
Hydrogen peroxide (Conc. >52%)	7722841	1,000		1
Hydrogen phosphide	7803512		P096	100
Hydrogen selenide	7783075	10		1
Hydrogen sulfide	7783064	500	U135	100
Hydroperoxide, 1-methyl-1-phenylethyl-	80159		U096	10
Hydroquinone	123319	500/10,000		100
2-Imidazolidinethione	96457		U116	10
Indeno(1,2,3-cd)pyrene	193395		U137	100
Iodomethane	74884		U138	100
Iron, Pentacarbonyl-	13463406	100		1
Isobenzan	297789	100/10,000		1
1,3-Isobenzofurandione	85449		U190	5,000
Isobutyronitrile	78820	1,000		1
Isobutyl alcohol (I,T)	78831		U140	5,000
Isocyanic acid, 3,4-Dichlorophenyl ester	102363	500/10,000		1
Isodrin	465736	100/10,000	P060	1
Isofluorphate	55914	100		100
Isophorone	78591			5,000
Isophorone Diisocyanate	4098719	500		1
Isoprene	78795			100
Isopropanolamine dodecylbenzene sulfonate	42504461			1,000
Isopropyl chloroformate	108236	1,000		1
Isopropylmethylpryrazolyl dimethylcarbamate	119380	500		1
Isosafrole	120581		U141	100
3(2H)-Isoxazolone, 5-(aminomethyl)-	2763964		P007	1,000
Kepone	143500		U142	1
Lactonitrile	78977	1,000		1
Lasiocarpine	303344		U143	10
Lead acetate	301042		U144	
Lead arsenate	7784409			1
	7645252			
	10102484			
Lead, bis(acetato-O)tetrahydroxytri	1335326		U146	10
Lead chloride	7758954			10
Lead fluoborate	13814965			10
Lead fluoride	7783462			10
Lead iodide	10101630			10

Table AP1.T4. List of Haza (All notes appea			ials	
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Lead nitrate	10099748			10
Lead phosphate	7446277		U145	10
Lead stearate	7428480			10
	1072351			
	52652592			
	56189094			
Lead subacetate	1335326		U146	10
Lead sulfate	15739807 7446142			10
Lead sulfide	1314870			10
	592870			10
Lead thiocyanate Leptophos	21609905	500/10,000		10
Lewisite		10		
Lindane	541253	1,000/10,000	U129	1
Lithium chromate		1,000/10,000	0129	
	14307358	100		10
Lithium hydride Malathion	7580678	100		1 100
Malainon Maleic acid	121755 110167			
	10167		U147	5,000
Maleic anhydride Maleic hydrazide	108316		U147 U148	5,000 5,000
Malononitrile	123331	500/10,000	U148 U149	1,000
Manganese, tricarbonyl methylcyclopentadienyl	12108133	100	0149	1,000
MDI (Methylene diphenyl diisocyanate)	12108133	100		5,000
Mechlorethamine	51752	10		3,000
MEK (Methyl ethyl ketone)	78933	10	U159	5,000
Melphalan	148823		U150	1
Mephosfolan	950107	500	0130	1
Mercaptodimethur	2032657	500		10
Mercuric acetate	1600277	500/10,000		10
Mercuric chloride	7487947	500/10,000		1
Mercuric cyanide	592041	500/10,000		1
Mercuric nitrate	10045940			10
Mercuric oxide	21908532	500/10,000		10
Mercuric sulfate	7783359			10
Mercuric thiocyanate	592858			10
Mercurous nitrate	10415755			10
	7782867			10
Mercury	7439976		U151	1
Mercury (acetate-O)phenyl-	62384		P092	100
Mercury fulminate	628864		P065	10
Methacrolein diacetate	10476956	1,000		1
Methacrylic anhydride	760930	500		1

Table AP1.T4. List of Hazard (All notes appear a			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Methacrylonitrile (I,T)	126987	500	U152	1,000
Methacryloyl chloride	920467	100		1
Methacryloyloxyethyl isocyanate	30674807	100		1
Methamidophos	10265926	100/10,000		1
Methanamine, N-methyl-	124403		U092	1,000
Methanamine, N-methyl-N-nitroso-	62759		P082	10
Methane, bromo-	74839		U029	1,000
Methane, chloro- (I,T)	74873		U045	100
Methane, chloromethoxy-	107302		U046	10
Methane, dibromo-	74953		U068	1,000
Methane, dichloro-	75092		U080	1,000
Methane, dichlorodifluoro-	75718		U075	5,000
Methane, iodo-	74884		U138	100
Methane, isocyanato-	624839		P064	10
Methane, oxybis(chloro-	542881		P016	10
Methanesulfenyl chloride, trichloro-	594423		P118	100
Methanesulfonyl fluoride	558258	1,000		1
Methanesulfonic acid, ethyl ester	62500	,	U119	1
Methane, tetrachloro-	56235		U211	10
Methane, tetranitro- (R)	509148		P112	10
Methane, tribromo-	75252		U225	100
Methane, trichloro-	67663		U044	10
Methane, trichlorofluoro-	75694		U121	5,000
Methanethiol (I.T)	74931		U153	100
6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10, 10- hexa-chloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide	115297		P050	1
1,3,4-Metheno-2H-cyclobutal[cd]pentalen-2- one,1,1a,3,3a,4,5,5a,5b,6-decachloroctahydro-	143500		U142	1
4,7-Methano-1H-indene, 1,4,5,6,7,8,8 heptachloro- 3a,4,7,7a-tetrahydro-	76448		P059	1
4,7-Methano-1H-indene, 1,2,4,5,6,7,8,8 octachloro- 2,3,3a,4,7,7a-hexahydro-	57749		U036	1
Methanol (I)	67561		U154	5,000
Methapyrilene	91805		U155	5,000
Methidathion	950378	500/10,000		1
Methiocarb	2032657	500/10,000	P199	10
Methomyl	16752775	500/10,000	P066	100
Methoxychlor	72435		U247	1
Methoxyethylmercuric acetate	151382	500/10,000		1
Methyl alcohol (I)	67561		U154	5,000
Methyl aziridine	75558		P067	1
Methyl bromide	74839	1,000	U029	1,000

Table AP1.T4. List of Hazar (All notes appear			ials	
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
1-Methylbutadiene (I)	504609	· · · · · · · · · · · · · · · · · · ·	U186	100
Methyl chloride (I,T)	74873		U045	100
Methyl 2-chloroacrylate	80637	500		1
Methyl chlorocarbonate (I,T)	79221		U156	1,000
Methyl chloroform	71556		U226	1,000
Methyl chloroformate	79221	500	U156	1,000
3-Methylcholanthrene	56495		U157	10
4,4'-Methylenebis(2-chloroaniline)	101144		U158	10
Methylene bromide	74953		U068	1,000
Methylene chloride	75092		U080	1,000
4,4'-Methylenedianiline	101779			10
Methylene diphenyl diisocyanate (MDI)	101688			5,000
Methyl ethyl ketone (MEK) (I,T)	78933		U159	5,000
Methyl ethyl ketone peroxide (R,T)	1338234		U160	10
Methyl hydrazine	60344	500	P068	10
Methyl iodide	74884		U138	100
Methyl isobutyl ketone	108101		U161	5,000
Methyl isocyanate	624839	500	P064	10
Methyl isothiocyanate	556616	500		1
2-Methyllactonitrile	75865		P069	10
Methyl mercaptan	74931	500	U153	100
Methyl methacrylate (I,T)	80626		U162	1,000
Methyl parathion	298000		P071	100
Methyl phenkapton	3735237	500		1
Methyl phosphonic dichloride	676971	100		1
4-Methyl-2-pentanone (I)	108101		U161	5,000
Methyl tert-butyl ether	1634044			1,000
Methyl thiocyanate	556649	10,000		1
Methylthiouracil	56042	,	U164	10
Methyl vinyl ketone	78944	10		1
Methylmercuric dicyanamide	502396	500/10,000		1
Methyltrichlorosilane	75796	500		1
Metolcarb	1129415	100/10,000		1
Mevinphos	7786347	500		10
Mexacarbate	315184	500/10,000		1,000
Mitomycin C	50077	500/10,000	U010	10
MNNG	70257		U163	10
Monocrotophos	6923224	10/10,000		1
Monoethylamine	75047	,		100
Monomethylamine	74895			100
Muscimol	2763964	500/10,000	P007	1,000

Table AP1.T4. List of Hazardo			ials	
(All notes appear at	the end of th	e table)		
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Mustard gas	505602	500		1
Naled	300765			10
5,12-Naphthaacenedione, 8-acetyl-10-[3 amino-2,3,6-tri- deoxy-alpha-L-lyxo-hexopyranosyl)oxy]-7,8,9,10- tetrahydro-6,8,11-trihydroxy-1-methoxy-, (8S-cis)-	20830813		U059	10
1-Naphthalenamine	134327		U167	100
2-Naphthalenamine (beta-Naphthylamine)	91598		U168	1
Naphthalenamine, N,N'-bis(2-chloroethyl)-	494031		U026	100
Naphthalene	91203		U165	100
Naphthalene, 2-chloro-	91587		U047	5,000
1,4-Naphthalenedione	130154		U166	5,000
2,7-Naphthalenedisulfonic acid, 3,3' [(3,3'-dimethyl-(1,1'- biphenyl)-4,4'-dryl)-bis(azo)] bis(5-amino-4-hydroxy)- tetrasodium salt	72571		U236	10
Naphthenic acid	1338245			100
1,4-Naphthoquinone	130154		U166	5,000
alpha-Naphthylamine	134327		U167	100
beta-Naphthylamine (2-Naphthalenamine)	91598		U168	1
alpha-Naphthylthiourea	86884		P072	100
Nickel++	7440020			100
Nickel ammonium sulfate	15699180			100
Nickel carbonyl	13463393	1	P073	10
Nickel carbonyl Ni(CO) ₄ , (T-4)-	13463393		P073	10
Nickel chloride	7718549 37211055			100
Nickel cyanide	557197		P074	10
Nickel hydroxide	12054487			10
Nickel nitrate	14216752			100
Nickel sulfate	7786814			100
Nicotine & salts	54115	100	P075	100
Nicotine sulfate	65305	100/10,000		1
Nitric acid	7697372	1,000		1,000
Nitric acid, thallium salt	10102451		U217	100
Nitric oxide	10102439	100	P076	10
p-Nitroaniline	100016		P077	5,000
Nitrobenzene (I,T)	98953	10,000	U169	1,000
4-Nitrobiphenyl	92933			10
Nitrocyclohexane	1122607	500		1
Nitrogen dioxide	10102440 10544726	100	P078	10
Nitrogen oxide	10102439		P076	10
Nitroglycerine	55630		P081	10

Table AP1.T4. List of Hazar (All notes appear			ials	
(All notes appear			USEPA	DO
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	HW No. ²	RQ (Pounds) ³
Nitrophenol (mixed)	25154556	Quantity (1 ounds)	11,1,110.	100
m-Nitrophenol	554847			100
o-Nitrophenol (2)	88755			100
p-Nitrophenol (4)	100027		U170	100
2-Nitropropane (I,T)	79469		U171	10
N-Nitrosodi-n-butylamine	924163		U172	10
N-Nitrosodiethanolamine	1116547		U173	1
N-Nitrosodiethylamine	55185		U174	1
N-Nitrosodimethylamine	62759	1,000	P082	10
N-Nitrosodiphenylamine	86306			100
N-Nitroso-N-ethylurea	759739		U176	1
N-Nitroso-N-methylurea	684935		U177	1
N-Nitroso-N-methylurethane	615532		U178	1
N-Nitrosomethylvinylamine	4549400		P084	10
N-Nitrosomorpholine	59892			1
N-Nitrosopiperidine	100754		U179	10
N-Nitrosopyrrolidine	930552		U180	1
Nitrotoluene	1321126			1,000
m-Nitrotoluene	99081			
o-Nitrotoluene	88722			
p-Nitrotoluene	99990			
5-Nitro-o-toluidine	99558		U181	100
Norbromide	991424	100/10,000		1
Octamethylpyrophosphoramide	152169		P085	100
Organorhodium complex (PMN-82-147)	0	10/10,000		1
Osmium tetroxide	20816120		P087	1,000
Ouabain	630604	100/10,000		1
7-Oxabicyclo[2,2,1]heptane-2,3-dicarboxylic acid	145733		P088	1,000
Oxamyl	23135220	100/10,000	P194	1
1,2-Oxathiolane, 2,2-dioxide	1120714		U193	10
2H-1,3,2-Oxazaphosphorin-2-amine, N,N bis (2- chloroethyl)tetrahydro-, 2-oxide	50180		U058	10
Oxetane, 3,3-bis(chloromethyl)-	78717	500		1
Oxirane (I,T)	75218		U115	10
Oxiranecarboxyaldehyde	765344		U126	10
Oxirane, (chloromethyl)-	106898		U041	100
Oxydisulfoton	2497076	500		1
Ozone	10028156	100		1
Paraformaldehyde	30525894			1,000
Paraldehyde	123637		U182	1,000
Paraquat	1910425	10/10,000		1

Table AP1.T4. List of Haza (All notes appear			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Paraquat methosulfate	2074502	10/10,000		1
Parathion	56382	100	P089	10
Parathion-methyl	298000	100/10,000		100
Paris green	12002038	500/10,000		100
PCBs	1336363	,		
Aroclor 1016	12674112			1
Aroclor 1221	11104282			1
Aroclor 1232	11141165			1
Aroclor 1242	53469219			1
Aroclor 1248	12672296			1
Aroclor 1254	11097691			1
Aroclor 1260	11096825			1
PCNB (Pentachloronitrobenzene)	82688		U185	100
Pentaborane	19624227	500		1
Pentabromodiphenylether (pentabromo (phenoxybenzene))	32534819			
Pentachlorobenzene	608935		U183	10
Pentachloroethane	76017		U184	10
Pentachlorophenol	87865		U242	10
Pentachloronitrobenzene (PCNB)	82688		U185	100
Pentadecylamine	2570265	100/10,000		1
Paracetic acid	79210	500		1
1,3-Pentadiene (I)	504609		U186	100
Perachloroethylene	127184		U210	100
Perchloromethylmercaptan	594423	500		100
Perfluorooctane sulfonic acid (PFOS) and its salts	1763231 2795393 29457725 29081569 70225148 56773423 251099168			
Perfluorooctane sulfonyl fluoride (PFOSF)	307357			
Phenacetin	62442		U187	100
Phenanthrene	85018			5,000
Phenol	108952	500/10,000	U188	1,000
Phenol, 2-chloro-	95578	- 2	U048	100
Phenol, 4-chloro-3-methyl-	59507		U039	5,000
Phenol, 2-cyclohexyl-4,6-dinitro-	131895		P034	100
Phenol, 2,4-dichloro-	120832		U081	100
Phenol, 2,6-dichloro-	87650		U082	100
Phenol, 4,4'-(1,2-diethyl-1,2-ethenediyl)bis-, (E)	56531		U089	1
Phenol, 2,4-dimethyl-	105679		U101	100

Table AP1.T4. List of Hazard (All notes appear			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Phenol, 2,4-dinitro-	51285		P048	10
Phenol, methyl-	1319773		U052	1,000
m-Cresol	108394			
o-Cresol	95487			
p-Cresol	106445			
Phenol, 2-methyl-4,6-dinitro-and salts	534521		P047	10
Phenol, 2,2'-methylenebis[3,4,6-trichloro-	70304		U132	100
Phenol, 2,2'-thiobis(4-chloro-6-methyl)-	4418660	100/10,000		1
Phenol, 2-(1-methylpropyl)-4,6-dinitro	88857		P020	1,000
Phenol, 3-(1-methylethyl)-, methylcarbamate	64006	500/10,000		1
Phenol, 4-nitro-	100027		U170	100
Phenol, pentachloro-	87865		U242	10
Phenol, 2,3,4,6-tetrachloro-	58902		U212	10
Phenol, 2,4,5-trichloro-	95954		U230	10
Phenol, 2,4,6-trichloro-	88062		U231	10
Phenol, 2,4,6-trinitro-, ammonium salt	131748		P009	10
Phenoxarsine, 10,10'-oxydi-	58366	500/10,000		1
L-Phenylalanine, 4-[bis(2-chloroethyl)aminol]	148823		U150	1
Phenyl dichloroarsine	696286	500		1
1,10-(1,2-Phenylene)pyrene	193395		U137	100
p-Phenylenediamine	106503			5,000
Phenylhydrazine hydrochloride	59881	1,000/10,000		1
Phenylmercury acetate	62384	500/10,000	P092	100
Phenylsilatrane	2097190	100/10,000		1
Phenylthiourea	103855	100/10,000	P093	100
Phorate	298022	10	P094	10
Phosacetim	4104147	100/10,000		1
Phosfolan	947024	100/10,000		1
Phosgene	75445	10	P095	10
Phosmet	732116	10/10,000		1
Phosphamidon	13171216	100		1
Phosphine	7803512	500		100
Phosphorothioic acid, o,o-Dimethyl-s (2-Methylthio) ethyl ester	2587908	500		1
Phosphorothioic acid, methyl-, o-ethyl o-(4- (methylthio)phenyl) ester	2703131	500		1
Phosphorothioic acid, methyl-, s-(2-(bis(1- methylethyl)amino)ethyl o-ethyl ester	50782699	100		1
Phosphorothioic acid, methyl-, 0-(4-nitrophenyl) o- phenyl ester	2665307	500		1
Phosphoric acid	7664382			5,000
Phosphoric acid, diethyl 4-nitrophenyl ester	311455		P041	100

Table AP1.T4. List of Hazardo			ials	
(All notes appear at	the end of th			
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Phosphoric acid, dimethyl 4-(methylthio) phenyl ester	3254635	500		1
Phosphoric acid, lead salt (2:3)	7446277	500	U145	10
Phosphorodithioic acid, O,O-diethyl S-[2 (ethylthio)ethyl]ester	298044		P039	1
Phosphorodithioic acid, O,O-diethyl S-(ethylthio), methyl ester	298022		P094	10
Phosphorodithioic acid, O,O-diethyl S-methyl ester	3288582		U087	5,000
Phosphorodithoic acid, O,O-dimethyl S-[2(methyl- amino)-2-oxoethyl] ester	60515		P044	10
Phosphorofluondic acid, bis(1-methylethyl) ester	55914		P043	100
Phosphorothioic acid, O,O-diethyl O-(4-nitrophenyl) ester	56382		P089	10
Phosphorothioic acid, O,[4-[(dime- thylamino)sulfonyl]phenyl]O,O-dimethyl ester	52857		P097	1,000
Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester	298000		P071	100
Phosphorothioic acid, 0,0-diethyl 0 pyrazinyl ester	297972		P040	100
Phosphorus	7723140	100		1
Phosphorus oxychloride	10025873	500		1,000
Phosphorous pentachloride	10026138	500		1
Phosphorus pentasulfide (R)	1314803		U189	100
Phosphorus pentoxide	1314563	10		1
Phosphorus trichloride	7719122	1,000		1,000
Phthalic anhydride	85449		U190	5,000
Physostigmine	57476	100/10,000	P204	1
Phosostigmine, salicylate (1:1)	57647	100/10,000		1
2-Picoline	109068		U191	5,000
Picotoxin	124878	500/10,000		1
Piperidine	110894	1,000		1
Piperidine, 1-nitroso-	100754		U179	10
Pirimifos-ethyl	23505411	1,000		1
Plumbane, tetraethyl-	78002		P110	10
Polychlorinated biphenyls (see PCBs or Aroclor)	1336363			1
Polychlorinated naphthalenes (Limited to those	70776033			
containing three or more chlorine atoms)				
Potassium arsenate	7784410			1
Potassium arsenite	10124502	500/10,000		1
Potassium bichromate	7778509			10
Potassium chromate	7789006			10
Potassium cyanide	151508	100	P098	10
Potassium hydroxide	1310583			1,000
Potassium permanganate	7722647			100

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Potassium silver cyanide	506616	500	P099	1
Promecarb	2631370	500/10,000		1
Pronamide	23950585		U192	5,000
Propanal, 2-methyl-2-(methylthio)-, O- [(methylamino)carbonyl]oxime	116063		P070	1
1-Propanamine (I,T)	107108		U194	5,000
1-Propanamine, N-propyl-	142847		U110	5,000
1-Propanamine, N-nitroso-N-propyl-	621647		U111	10
Propane, 1,2-dibromo-3-chloro	96128		U066	1
Propane, 2-nitro- (I,T)	79469		U171	10
1,3-Propane sultone	1120714		U193	10
Propane 1,2-dichloro-	78875		U083	1,000
Propanedinitrile	109773		U149	1,000
Propanenitrile	107120		P101	10
Propanenitrile, 3-chloro-	542767		P027	1,000
Propanenitrile, 2-hydroxy-2-methyl-	75865		P069	10
Propane, 2,2'-oxybis[2-chloro-	108601		U027	1,000
1,2,3-Propanetnol, trinitrate- (R)	55630		P081	10
1-Propanol, 2,3-dibromo-, phosphate (3:1)	126727		U235	10
1-Propanol, 2-methyl- (I,T)	78831		U140	5,000
2-Propanone (I)	67641		U002	5,000
2-Propanone, 1-bromo-	598312		P017	1,000
Propargite	2312358			10
Propargyl alcohol	107197		P102	1,000
Propargyl bromide	106967	10		1
2-Propenal	107028		P003	1
2-Propenamide	79061		U007	5,000
1-Propene, 1,1,2,3,3,3-hexachloro-	1888717		U243	1,000
1-Propene, 1,3-dichloro-	542756		U084	100
2-Propenenitrile	107131		U009	100
2-Propenenitrile, 2-methyl- (I,T)	126987		U152	1,000
2-Propenoic acid (I)	79107		U008	5,000
2-Prepenoic acid, ethyl ester (I)	140885		U113	1,000
2-Prepenoic acid, 2-methyl-, ethyl ester	97632		U118	1,000
2-Prepenoic acid, 2-methyl-, methyl ester (I,T)	80626		U162	1,000
2-Propen-1-o1	107186		P005	100
Propiolactone, beta-	57578	500		1
Propionaldehyde	123386			1,000
Propionic acid	79094			5,000
Propionic acid, 2-(2,4,5-trichlorophenoxyl)-	93721		U233	100
Propionic anhydride	123626			5,000

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Propoxor (Baygon)	114261		U411	100
Propionitrile	107120	500		10
Propionitrile, 3-chloro-	542767	1,000		1,000
Propiophenone, 1, 4-amino phenyl	70699	100/10,000		1
n-Propylamine	107108		U194	5,000
Propyl chloroformate	109615	500		1
Propylene dichloride	78875		U083	1,000
Propylene oxide	75569	10,000		100
1,2-Propylenimine	75558	10,000	P067	1
2-Propyn-1-o1	107197	,	P102	1,000
Prothoate	2275185	100/10,000		1
Pyrene	129000	1,000/10,000		5,000
Pyrethrins	121299 121211	, ,		1
	8003347			
3,6-Pyridazinedione, 1,2-dihydro-	123331		U148	5,000
4-Pyridinamine	504245		P008	1,000
Pyridine	110861		U196	1,000
Pyridine, 2-methyl-	109068		U191	5,000
Pyridine, 2-methyl-5-vinyl-	140761	500	0171	1
Pyridine, 4-amino-	504245	500/10,000		1,000
Pyridine, 4-nitro-, 1-oxide	1124330	500/10,000		1
Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)	54115		P075	100
2,4-(1H,3H)-Pyrimidinedione, 5-[bis(2- chloroethyl)amino]-	66751		U237	10
4(1H)-Pyrimidinone, 2,3-dihydro-6-methyl-2-thioxo-	56042		U164	10
Pyriminil	53558251	100/10,000		1
Pyrrolidine, 1-nitroso-	930552		U180	1
Quinoline	91225			5,000
Quinone (p-Benzoquinone)	106514		U197	10
Quintobenzene	82688		U185	100
Reserpine	50555		U200	5,000
Resorcinol	108463		U201	5,000
Saccharin and salts	81072		U202	100
Salcomine	14167181	500/10,000		1
Sarin	107448	10		1
Safrole	94597		U203	100
Selenious acid	7783008	1,000/10,000	U204	10
Selenious acid, dithallium salt	12039520	. ,	P114	1,000
Selenium ++	7782492			100
Selenium dioxide	7446084		U204	10
Selenium oxychloride	7791233	500		1

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Selenium sulfide (R,T)	7488564		U205	10
Selenourea	630104		P103	1,000
Semicarbazide hydrochloride	563417	1,000/10,000		1
L-Serine, diazoacetate (ester)	115026		U015	1
Silane, (4-aminobutyl)diethoxymethyl-	3037727	1,000		1
Silver ++	7440224			1,000
Silver cyanide	506649		P104	1
Silver nitrate	7761888			1
Silvex (2,4,5-TP)	93721		U233	100
Sodium	7440235			10
Sodium arsenate	7631892	1,000/10,000		1
Sodium arsenite	7784465	500/10,000		1
Sodium azide	26628228	500	P105	1,000
Sodium bichromate	10588019			10
Sodium bifluoride	1333831			100
Sodium bisulfite	7631905			5,000
Sodium cacodylate	124652	100/10,000		1
Sodium chromate	7775113			10
Sodium cyanide	143339	100	P106	10
Sodium dodecylbenzenesulfonate	25155300			1,000
Sodium fluoride	7681494			1,000
Sodium fluoroacetate	62748	10/10,000		10
Sodium hydrosulfide	16721805			5,000
Sodium hydroxide	1310732			1,000
Sodium hypochlorite	7681529 10022705			100
Sodium methylate	124414			1,000
Sodium nitrite	7632000			100
Sodium prentachlorophenate	131522	100/10,000		1
Sodium phosphate, dibasic	7558794 10039324 10140655			5,000
Sodium phosphate, tribasic	7601549 7758294 7785844 10101890 10124568 10361894			5,000
Sodium selenate	13410010	100/10,000		1
Sodium selenite	10102188 7782823	100/10,000		100
Sodium tellurite	10102202	500/10,000		1
Stannane, acetoxytriphenyl	900958	500/10,000		1

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Streptozotocin	18883664		U206	1
Strontium chromate	7789062			10
Strychnidin-10-one	57249		P108	10
Strychnidin-10-one, 2,3-dimethoxy-	357573		P018	100
Strychnine, & salts	572494	100/10,000	P108	10
Strychnine sulfate	60413	100/10,000		1
Styrene	100425			1,000
Styrene oxide	96093			100
Sulfotep	3689245	500		100
Sulfoxide, 3-chloropropyl octyl	3569571	500		1
Sulfur monochloride	12771083			1,000
Sulfur dioxide	7446095	500		1
Sulfur phosphide (R)	1314803		U189	100
Sulfur tetrafluoride	7783600	100		1
Sulfur trioxide	7446119	100		1
Sulfuric acid	7664939 8014957	1,000		1,000
Sulfuric acid, dithallium salt	7446186 10031591		P115	100
Sulfuric acid, dimethyl ester	77781		U103	100
Tabun	77816	10		1
2,4,5-T acid	93765		U232	1,000
2,4,5-T amines	2008460			5,000
	1319728			
	3813147			
	6369966 6369977			
Tellurium	13494809	500/10,000		1
Tellurium hexafluoride	7783804	100		1
2,4,5-T esters	93798			1,000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1928478			,
	2545597			
	25168154			
2,4,5-T salts	61792072 13560991			1,000
2,4,5-T	93765		U232	1,000
TDE (Dichloro diphenyl dichloroethane)	72548		U232	1,000
Tetrabromodiphenylether (Tetrabromo phenoxybenzene)	40088479		0000	1
TEPP (Tetraethyl ester diphosphoric acid)	107493	100		10
				10
Terbufos	13071799	100	11207	-
1,2,4,5-Tetrachlorobenzene	95943		U207	5,000
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	1746016		11200	1
1,1,1,2-Tetrachloroethane	630206		U208	100

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
(All libres appear at		Threshold Planning	USEPA	RQ
Hazardous Waste/Substance/Material	CAS No. 1	Quantity (Pounds)	HW No. ²	(Pounds) 3
1,1,2,2-Tetrachloroethane	79345	Qualities (1 cultures)	U209	100
Tetrachloroethene	127184		U210	100
Tetrachloroethylene	127184		U210	100
2,3,4,6-Tetrachlorophenol	58902		U212	10
Tetraethyl lead	78002	100	P110	10
Tetraethyl pyrophosphate	107493		P111	10
Tetraethyldithiopyrophosphate	3689245		P109	100
Tetraethyltin	597648	100		1
Tetramethyllead	75741	100		1
Tetrahydrofuran (I)	109999		U213	1,000
Tetranitromethane (R)	509148	500	P112	10
Tetraphosphoric acid, hexaethyl ester	757584		P062	100
Thallic oxide	1314325		P113	100
Thallium ++	7440280			1,000
Thallium acetate	563688		U214	100
Thallium carbonate	6533739		U215	100
Thallium chloride	7791120		U216	100
Thallium nitrate	10102451		U217	100
Thallium oxide	1314325		P113	100
Thallium selenite	12039520		P114	1,000
Thallium sulfate	7446186 10031591	100/10,000	P115	100
Thallous carbonate (Thallium (I) carbonate)	6533739	100/10,000	U215	100
Thallous chloride (Thallium (I) chloride)	7791120	100/10,000	U216	100
Thallous malonate (Thallium (I) malonate)	2757188	100/10,000		1
Thallous sulfate (Thallium (I) sulfate)	7446186	100/10,000	P115	100
Thioacetamide	62555		U218	10
Thiocarbazide	2231574	1,000/10,000		1
Thiodiphosphoric acid, tetraethyl ester	3689245		P109	100
Thiofanox	39196184	100/10,000	P045	100
Thioimidodicarbonic diamide [(H2N)C(S)] 2NH	541537		P049	100
Thiomethanol (I,T)	74931		U153	100
Thionazin	297972	500		100
Thioperoxydicarbonic diamide [(H2N)C(S)] 2S2, tetra- methyl-	137268		U244	10
Thiophenol	108985	500	P104	100
Thiosemicarbazide	79196	100/10,000	P116	100
Thiourea	62566		U219	10
Thiourea, (2-chlorophenyl)-	5344821	100/10,000	P026	100
Thiourea, (2-methylphenyl)-	614788	500/10,000		1
Thiourea, 1-naphthalenyl-	86884		P072	100

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Thiourea, phenyl-	103855	· · · · · · · · · · · · · · · · · · ·	P093	100
Thiram	137268		U244	10
Titanium tetrachloride	7550450	100		1,000
Toluene	108883		U220	1,000
Toluenediamine	95807 496720 823405 25376458		U221	10
Toluene diisocyanate (R,T)	584849 91087 26471625	500 100	U223	100 100
o-Toluidine	95534		U328	100
p-Toluidine	106490		U353	100
o-Toluidine hydrochloride	636215		U222	100
Toxaphene	8001352		P123	1
2,4,5-TP acid	93721		U233	100
2,4,5-TP acid esters	32534955			100
1H-1,2,4-Triazol-3-amine	61825		U011	10
Trans-1,4-dichlorobutene	110576	500		1
Triamiphos	1031476	500/10,000		1
Triazofos	24017478	500		1
Tributyltin acetate	56360			
Bis(Tributyltin) 2,3-dibromosuccinate	56323172			
Tributyltin fluoride	1983104 27615981			
Bis Tributyltin fumarate	6454359			
Tributyltin laurate	3090366			
Tributyltin methacrylate	2155706			
Bis (tributyltin) phthalate	4782290			
Copolymer of alkyl acrylate, methyl methacrylate and tributyltin methacrylate(alkyl; C=8)				
Tributyltin sulfamate	6517255			
Tributyltin maleate	14275571			
Tributyltin chlroride	1461229			
Tributyltin naphtenate	85409172			
Tributyl rosinate (Tributyl abietate)	26239645			
Trichloroacetyl chloride	76028	500		1
Trichlorfon	52686			100
1,2,4-Trichlorobenzene	120821			100
1,1,1-Trichloroethane	71556		U226	1,000
1,1,2-Trichloroethane	79005		U227	100
Trichloroethene	79016		U228	100
Trichloroethylene	79016		U228	100

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Trichloroethylsilane	115219	500		1
Trichloronate	327980	500		1
Trichloromethanesulfenyl chloride	594423		P118	100
Trichloromonofluoromethane	75694		U121	5,000
Trichlorophenol	21567822			10
2,3,4-Trichlorophenol	15950660			
2,3,5-Trichlorophenol	933788			
2,3,6-Trichlorophenol	933755			
2,4,5-Trichlorophenol	95954		U230	10
2,4,6-Trichlorophenol	88062		U231	10
3,4,5-Trichlorophenol	609198			
Trichlorophenylsilane	98135	500		1
Trichloro(chloromethyl)silane	1558254	100		1
Trichloro(dichlorophenyl)silane	27137855	500		1
Triethanolamine dodecylbenzene-sulfonate	27323417			1,000
Triethoxysilane	998301	500		1
Trifluralin	1582098			10
Triethylamine	121448			5,000
Trimethylamine	75503			100
Trimethylchlorsilane	75774	1,000		1
2,2,4-Trimethylpentane	540841	,		1,000
Trimethylolpropane phosphite	824113	100/10,000		1
Trimethyiltin chloride	1066451	500/10,000		1
1,3,5-Trinitrobenzene (R,T)	99354	,	U234	10
1,3,5-Trioxane, 2,4,6-trimethyl-	123637		U182	1,000
Triphenyltin N,N-Dimethyl carbamate	1803129			,
Triphenyltin fluoride	379522			
Triphenyltin acetate	900958			
Triphenyltin chloride	639587	500/10,000		1
Triphenyltin hydroxide	76879	,		
Triphenyltin=fatty acid salts (limited to those containing	18380717			
9,10, or 11 carbon number in the fatty acid)	18380728			
	47672311			
Triphenytin chloroacetate	94850905 7094942			
Tris(2-chloroethyl)amine	555771	100		1
Tris(2,3-dibromopropyl) phosphate	126727	100	U235	10
2, 4, 6-Tri-tert-butylphenol (Trialkylphenol)	732263		0233	10
Trypan blue	732203		U236	10
Unlisted Hazardous Wastes Characteristic of Ignitability	NA		D0230	100
Unlisted Hazardous Wastes Characteristic of Corrosivity	NA NA		D001 D002	100
Unlisted Hazardous Wastes Characteristic of Reactivity	NA		D003	100

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)					
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning	USEPA HW No. ²	RQ (Pounds) ³	
Unlisted Hazardous Wastes Characteristic of Toxicity					
Arsenic			D004	1	
Barium			D005	1,000	
Benzene			D018	10	
Cadmium			D006	10	
Carbon Tetrachloride			D019	10	
Chlordane			D020	1	
Chlorobenzene			D021	100	
Chloroform			D022	10	
Chromium			D007	10	
o-Cresol			D023	100	
m-Cresol			D024	100	
p-Cresol			D025	100	
Cresol			D026	100	
2,4-D (Dichlorophenoxyacetic acid)			D016	100	
1,4-Dichlorobenzene			D027	100	
1,2-Dichloroethane			D028	100	
1,1-Dichloroethylene			D029	100	
2,4-Dinitrotoluene			D030	10	
Endrin			D012	1	
Heptachlor (and epoxide)			D031	1	
Hexachlorobenzene			D032	10	
Hexachlorobutadiene			D033	1	
Hexachloroethane			D034	100	
Lead			D008	10	
Lindane			D013	1	
Mercury			D009	1	
Methoxychlor			D014	1	
Methyl ethyl ketone			D035	5,000	
Nitrobenzene			D036	1,000	
Pentachlorophenol			D037	10	
Pyridine			D038	1,000	
Selenium			D010	10	
Silver			D011	1	
Tetrachloroethylene			D039	100	
Toxaphene			D015	1	
Trichloroethylene			D040	100	
2,4,5 Trichlorophenol			D041	100	
2,4,5-TP			D017	100	
Vinyl chloride			D043	1	
Jracil mustard	66751		U237	10	

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Uranyl acetate	541093			100
Uranyl nitrate	10102064 36478769			100
Urea, N-ethyl-N-nitroso	759739		U176	1
Urea, N-methyl-N-nitroso	684935		U177	1
Urethane (Carbamic acid ethyl ester)	51796		U238	100
Valinomycin	2001958	1,000/10,000		1
Vanadic acid, ammonium salt	7803556		P119	1,000
Vanadic oxide V ₂ 0 ₅	1314621		P120	1,000
Vanadic pentoxide	1314621		P120	1,000
Vanadium pentoxide	1314621	100/10,000		1,000
Vanadyl sulfate	27774136			1,000
Vinyl chloride	75014		U043	1
Vinyl acetate	108054			5,000
Vinyl acetate monomer	108054	1,000		5,000
Vinylamine, N-methyl-N-nitroso-	4549400	,	P084	10
Vinyl bromide	593602			100
Vinylidene chloride	75354		U078	100
Warfarin, & salts, when present at concentrations >0.3%	81812	500/10,000	P001	100
Warfarin sodium	129066	100/10,000		100
Xylene (mixed)	1330207	,	U239	100
m-Benzene, dimethyl	108383			1,000
o-Benzene, dimethyl	95476			1,000
p-Benzene, dimethyl	106423			100
Xylenol	1300716			1,000
Xylylene dichloride	28347139	100/10,000		1
Yohimban-16-carboxylic acid, 11,17 dimethoxy-18- [(3,4,5-trimethoxy-benzoyl)oxy]-, methyl ester (3-beta, 16-beta,17-alpha,18-beta,20-alpha)-	50555		U200	5,000
Zinc ++	7440666			1,000
Zinc acetate	557346			1,000
Zinc ammonium chloride	52628258 14639975 14639986			1,000
Zinc borate	1332076			1,000
Zinc bromide	7699458			1,000
Zinc carbonate	3486359			1,000
Zinc chloride	7646857			1,000
Zinc cyanide	557211		P121	10
Zinc, dichloro(4,4-dimethyl-5((((methyl- amino)carbonyl)oxy)imino)pentaenitrile)-,(t-4)-	58270089	100/10,000		1
Zinc fluoride	7783495			1,000

Table AP1.T4. List of Hazardous Waste/Substances/Materials				
(All notes appear a	t the end of th	ne table)		
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
Zinc formate	557415			1,000
Zinc hydrosulfite	7779864			1,000
Zinc nitrate	7779886			1,000
Zinc phenosulfonate	127822			5,000
Zinc phosphide	1314847	500	P122	100
Zinc phosphide Zn_3P_2 , when present at concentrations $>10\%$	1314847		P122	100
Zinc silicofluoride	16871719			5,000
Zinc sulfate	7733020			1,000
Zirconium nitrate	13746899			5,000
Zirconium potassium fluoride	16923958			1,000
Zirconium sulfate	14644612			5,000
Zirconium tetrachloride	10026116			5,000
F001			F001	10
solvent mixtures. (a) Tetrachloroethylene (b) Trichloroethylene	127184 79016		U210 U228	100 100
(c) Methylene chloride	75092		U0228	1,000
(d) 1,1,1-Trichloroethane	71556		U226	1,000
(e) Carbon tetrachloride	56235		U211	1,000
(f) Chlorinated fluorocarbons	NA		0211	5,000
F002	INA		F002	10
The following spent halogenated solvents:all spent solve more (by volume) of one or more of the above halogenat bottoms from the recovery of these spent solvents and sp	ed solvents or ent solvent m	those listed in F001,	re use, a tota F004, or F00	l of 10% or
(a) Tetrachloroethylene	127184		U210	100
(b) Methylene chloride	75092		U080	1,000
(c) Trichloroethylene	79016		U228	100
(d) 1,1,1-Trichloroethane	71556		U226	1,000
(e) Chlorobenzene	108907		U037	100
(f) 1,1,2-Trichloro-1,2,2 trifluoroethane	76131			5,000
(g) o-Dischlorobenzene	95501		U070	100
(h) Trichlorofluoromethane	75694		U121	5,000
(i) 1,1,2-Trichloroethane	79005		U227	100
F003			F003	100
The following spent non-halogenated solvents and the st	ill bottoms fro	m the recovery of the	se solvents:	

Table AP1.T4. List of Hazard (All notes appear)			ials		
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³	
(a) Xylene	1330207			1,000	
(b) Acetone	67641			5,000	
(c) Ethyl acetate	141786			5,000	
(d) Ethylbenzene	100414			1,000	
(e) Ethyl ether	60297			100	
(f) Methyl isobutyl ketone	108101			5,000	
(g) n-Butyl alcohol	71363			5,000	
(h) Cyclohexanone	108941			5,000	
(i) Methanol	67561			5,000	
F004			F004	100	
The following spent non-halogenated solvents and the st	ill bottoms fro	m the recovery of the	se solvents:		
(a) Cresols/Cresylic acid	1319773		U052	100	
(b) Nitrobenzene	98953		U169	1,000	
F005			F005	100	
The following spent non-halogenated solvents and the still bottoms from the recovery of these solvents:					
(a) Toluene	108883		U220	1,000	
(b) Methyl ethyl ketone	78933		U159	5,000	
(c) Carbon disulfide	75150		P022	100	
(d) Isobutanol	78831		U140	5,000	
(e) Pyndine	110861		U196	1,000	
F006			F006	10	
Wastewater treatment sludges from electroplating operat anodizing of aluminum; (2) tin plating on carbon steel; (aluminum or zinc-aluminum plating on carbon steel; (5) plating on carbon steel; and (6) chemical etching and mi	3) zinc plating cleaning/strip	(segregated basis) on ping associated with t	carbon stee in, zinc and	el; (4) aluminum	
F007			F007	10	
Spent cyanide plating bath solutions from electroplating	operations.	1		1	
F008			F008	10	
Plating bath residues from the bottom of plating baths from process.	om electroplat	ing operations where	-	1	
F009			F009	10	
Spent stripping and cleaning bath solutions from electron	plating operati	ons where cyanides and		-	
F010			F010	10	
Quenching bath residues from oil baths from metal heat	treating operat	tions where cyanides		-	
F011			F011	10	
Spent cyanide solution from salt bath pot cleaning from	metal heat trea	ting operations.	[1	
F012			F012	10	
Quenching wastewater treatment sludges from metal hea process.	t treating oper	ations where cyanide		the	
F019			F019	10	
Wastewater treatment sludges from the chemical conver phosphating in aluminum can washing when such phosp				n	

Table AP1.T4. List of Hazardous Waste/Substances/Materials (All notes appear at the end of the table)				
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
F020			F020	1
Wastes (except wastewater and spent carbon from hydroge				
manufacturing use (as a reactant, chemical intermediate, o tetrachlorophenol, or of intermediates used to produce their wastes from the production of hexachlorophene from high	ir pesticide d	erivatives. (This listi	ng does not	
F021			F021	1
Wastes (except wastewater and spent carbon from hydroge manufacturing use (as a reactant, chemical intermediate, o pentachlorophenol, or of intermediates used to produce its	r component		ess) of	
F022			F022	1
Wastes (except wastewater and spent carbon from hydroge reactant, chemical intermediate, or component in a formula under alkaline conditions.				
F023 Wastes (except wastewater and spent carbon from hydroge			F023	1
on equipment previously used for the production or manuf component in a formulating process) of tri- and tetrachloro equipment used only for the production or use of hexa-chloro	ophenols. (T	his listing does not in	clude wastes 4,5-tri-chloro	s from phenol.)
F024			F024	1
Wastes, including but not limited to, distillation residues, l production of chlorinated aliphatic hydrocarbons, having c catalyzed processes. (This listing does not include light en wastewater, wastewater treatment sludges, spent catalysts, listed in Table AP1.T4 and having a USEPA HW No. beg	carbon contends, spent filter and wastes	nt from one to five, ut ers and filter aids, spe listed in separately in	ilizing free r nt desicants,	adical
F025			F025	1
Condensed light ends, spent filters and filter aids, and spent desiccant wastes from the production of certain chlorinated aliphatic hydrocarbons, by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain lengths ranging from one to and including five, with varying amounts and positions of chlorine substitution.				
F026			F026	1
Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials on equipment previously used for the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-penta-, or hexachlorobenzene under alkaline conditions.				
F027			F027	1
Discarded unused formulations containing tri-, tetra-, or per containing compounds derived from these chlorophenols. hexachlorophene synthesized from prepurified 2,4,5-tri-ch	(This listing	does not include form	nulations co	
F028			K028	1
Residues resulting from the incineration or thermal treatmer F022, F023, F026, and F027.	ent of soil co	ontaminated with EPA	. HW# F020	, F021,

Table AP1.T4. List of Hazardo (All notes appear at			ials	
(An notes appear at			LICEDA	DO
Hazardous Waste/Substance/Material	CASNal	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ
	CAS No. ¹	Quantity (Pounds)		(Pounds) ³
F032	•		F032	1
Wastewater (except that which has not come into contact y				
preservative drippage, and spent formulations from wood				
or have previously used chlorophenolic formulations (exce				
otherwise currently regulated as hazardous wastes (i.e., F0 replaced all process equipment that may have come into co				
thereof, and does not resume or initiate use of chloropheno				
bottom sediment sludge from the treatment of wastewater				
pentachlorophenol.	nom wood p	reserving processes t		sole and/or
F034			F034	1
Wastewaters (except those that have not come into contact				
preservative drippage, and spent formulations from wood j				
formulations. This listing does not include K001 bottom s wood preserving processes that use creosote and/or pentac			t of wastewa	tter from
		•	E025	1
F035			F035	1
Wastewaters (except those that have not come into contact				
preservative drippage, and spent formulations from wood				
preservatives containing arsenic or chromium. This listing				ge from the
treatment of wastewater from wood preserving processes t	hat use creos	sote and/or pentachloi		
F037			F037	1
Petroleum refinery primary oil/water/solids separation slue				
separation of oil/water/solids during the storage or treatme				
from petroleum refineries. Such sludges include, but are no				
separators; tanks and impoundment; ditches and other con				
weather flow. Sludge generated in storm water units that d				
non-contact once-through cooling waters segregated for tr				
generated in activated sludge, trickling filter, rotating biolo				
units (including sludges generated in one or more addition			treated in ag	gressive
biological treatment units) and K051 wastes are not includ	ed in this lis	ting.	F0.20	-
F038			F038	1
Petroleum refinery secondary (emulsified) oil/water/solids				
from the physical and/or chemical separation of oil/water/s	1		1	
Such wastes include, but are not limited to, all sludges and				
tanks and impoundments, and all sludges generated in DA				
receive dry weather flow; sludges generated from once-thr				
from other process or oil cooling wastes, ; sludges and floa				
biological contactor, or high-rate aeration biological treatm				
or more additional units after wastewater has been treated	in aggressive	e biological treatment	units) and F	037, K048,
and K051 wastes are not included in this listing.			17001	1
K001			K001	1
Bottom sediment sludge from the treatment of wastewater	s from wood	preserving processes	that use cree	osote and/or
pentachlorophenol.				
K002			K002	10
Wastewater treatment sludge from the production of chron	ne yellow an	d orange pigments.		
K003			K003	10
Wastewater treatment sludge from the production of moly	odate orange	nigments	I	
ruste nuter reaction strange from the production of mory	saute orunge	P'omento.		

Table AP1.T4. List of Hazardo			ials	
(All notes appear at	the end of th			
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
K004			K004	10
Wastewater treatment sludge from the production of zinc	yellow pigmo	ents.		
K005			K005	10
Wastewater treatment sludge from the production of chror	ne green pig	ments.		1
K006			K006	10
Wastewater treatment sludge from the production of chror	ne oxide gre	en pigments (anhydro	us and hydra	ated).
K007			K007	10
Wastewater treatment sludge from the production of iron b	olue pigment	S.		
K008			K008	10
Oven residue from the production of chrome oxide green	oigments.			
K009			K009	10
Distillation bottoms from the production of acetaldehyde f	rom ethylen	e.		
K010			K010	10
Distillation side cuts from the production of acetaldehyde	from ethyler	le.		
K011			K011	10
Bottom stream from the wastewater stripper in the product	tion of acryle	nitrile	11011	10
K013			K013	10
Bottom stream from the acetonitrile column in the product	tion of acryle	nitrile	11010	10
K014			K014	5,000
Bottoms from the acetonitrile purification column in the p	roduction of	acrylonitrile	11011	0,000
K015			K015	10
Still bottoms from the distillation of benzyl chloride.				
K016			K016	1
Heavy ends or distillation residues from the production of	carbon tetra	chloride.	11010	-
K017			K017	10
Heavy ends (still bottoms) from the purification column ir	the product	ion of epi-chlorohydr		10
K018			K018	1
Heavy ends from the fractionation column in ethyl chlorid	e production		11010	-
K019	production		K019	1
Heavy ends from the distillation of ethylene dichloride in	l ethylene dicl	loride production	11017	-
K020			K020	1
Heavy ends from the distillation of vinyl chloride in vinyl	chloride mo	nomer production.	11020	-
K021			K021	10
Aqueous spent antimony catalyst waste from fluorometha	nes productio	n	11021	10
K022			K022	1
Distillation bottom tars from the production of phenol/ace	tone from cu	mene		
K023			K023	5,000
Distillation light ends from the production of ophthalic and	L hvdride from	naphthalene	11040	
K024			K024	5,000
Distillation bottoms from the production of phthalic anhyc	l Iride from na	nhthalene	11047	5,000
production of phulane annye		ipininaiene.		

Table AP1.T4. List of Hazardo			ials	
(All notes appear at	the end of th			
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
K025			K025	10
Distillation bottoms from the production of nitrobenzene b	y the nitration	on of benzene.		
K026			K026	1,000
Stripping still tails from the production of methyl ethyl pyr	idines.			
K027			K027	10
Centrifuge and distillation residues from toluene diisocyan	ate producti	on.		
K028			K028	1
Spent catalyst from the hydrochlorinator reactor in the pro-	duction of 1,	1,1-trichloroethane.		
K029			K029	1
Waste from the product steam stripper in the production of	1,1,1-trichl	oroethane.		
K030			K030	1
Column bottoms or heavy ends from the combined produc	tion of trichl	oroethylene and percl	hloroethylen	e.
K031			K031	1
By-product salts generated in the production of MSMA an	d cacodylic a	acid.		
K032			K032	10
Wastewater treatment sludge from the production of chlore	lane.			
K033			K033	10
Wastewater and scrub water from the chlorination of cyclo	pentadiene i	n the production of cl	nlordane.	
K034		-	K034	10
Filter solids from the filtration of hexachlorocyclopentadie	ne in the pro	duction of chlordane.		
K035			K035	1
Wastewater treatment sludges generated in the production	of creosote.			
K036			K036	1
Still bottoms from toluene reclamation distillation in the pr	oduction of	disulfoton.		
K037			K037	1
Wastewater treatment sludges from the production of disul	foton.			
K038			K038	10
Wastewater from the washing and stripping of phorate pro	duction.			
K039			K039	10
Filter cake from the filtration of diethylphosphorodithioic	acid in the p	roduction of phorate.		
K040		-	K040	10
Wastewater treatment sludge from the production of phora	te.			
K041			K041	1
Wastewater treatment sludge from the production of toxap	hene.			
K042			K042	10
Heavy ends or distillation residues from the distillation of	tetrachlorob	enzene in the product		Т.
K043		1	K043	10
2,6-Dichlorophenol waste from the production of 2,4-D.				
K044			K044	10
Wastewater treatment sludges from the manufacturing and	processing	of explosives.		

Table AP1.T4. List of Hazard (All notes appear a			ials	
Hazardous Waste/Substance/Material	CAS No. ¹	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
K045			K045	10
Spent carbon from the treatment of wastewater containing	g explosives.	I		-
K046	, r		K046	10
Wastewater treatment sludges from the manufacturing, for	rmulation an	d loading of lead-base		
K047			K047	10
Pink/red water from TNT operations.			11017	10
K048			K048	10
Dissolved air flotation (DAF) float from the petroleum re	fining indust	Î.	11040	10
K049		. y.	K049	10
Slop oil emulsion solids from the petroleum refining indu	otru		K047	10
K050	su y.		V050	10
	n nefinin a in	der a ture	K050	10
Heat exchanger bundle cleaning sludge from the petroleu		dustry.	1/0//1	10
K051			K051	10
API separator sludge from the petroleum refining industry	/.	1		10
K052			K052	10
Tank bottoms (leaded) from the petroleum refining indust	ry.	1		
K060			K060	1
Ammonia still lime sludge from coking operations.	1	1		
K061			K061	10
Emission control dust/sludge from the primary production	n of steel in e	lectric furnaces.		
K062			K062	10
Spent pickle liquor generated by steel finishing operation 331 and 332).	s of facilities	within the iron and st	eel industry	(SIC Codes
K064			K064	10
Acid plant blowdown slurry/sludge resulting from thicker	ning of blowd	lown slurry from prim	ary copper p	production.
K065			K065	10
Surface impoundment solids contained in and dredged fro facilities.	om surface in	poundments at prima	ry lead smel	ting
K066			K066	10
Sludge from treatment of process wastewater and/or acid	plant blowdo	wn from primary zinc	production.	
K069	-		K069	10
Emission control dust/sludge from secondary lead smeltir	lg.	1		
K071	-8.		K071	1
Brine purification muds from the mercury cell process in	chlorine proc	luction where senarat		
not used.	emornie proc	action, where separat	ery propulli	
K073			K073	10
Chlorinated hydrocarbon waste from the purification step chlorine production.	of the diaphi	ragm cell process usin	g graphite a	nodes in
K083			K083	100
Distillation bottoms from aniline extraction.	1	I		1
K084			K084	1
Wastewater treatment sludges generated during the produ	ction of veter	rinary pharmaceutical		
organo-arsenic compounds.		J1		

(All notes appear at the end of the table) Threshold Planning USEPA (Pounds) RQ (Pounds) Hazardous Waste/Substance/Material CAS No. 1 Quantity (Pounds) K085 10 Distillation or fractionation column bottoms from the production of chlorobenzenes. K086 10 Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 100 Solvent washes from primary aluminum reduction. K088 10 Spent polliners from primary aluminum reduction. K090 10 Finission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation bight ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of 1,1,1-trichloroethane. K093 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K093 100 Distillation bottoms from the production of 2,4-D. K093 100 Distillation bottoms from the production of 2,4-D. K093 100 Untreated process wastewater from the product	Table AP1.T4. List of Hazar	dous Waste	Substances/Materi	ials	
Hazardous Waste/Substance/Material CAS No. 1 Quantity (Pounds) HW No. 2 (Pounds) K085 10 501 500 500 500 500 500 500 5000				~~~~~	
K085 K085 10 Distillation or fractionation column bottoms from the production of chlorobenzenes. K086 10 Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 100 Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 100 Decanter tank tar sludge from coking operations. K088 10 Spent polliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromiumsilicon production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Heavy ends from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10	Hazardous Waste/Substance/Material	CAS No. 1			RQ (Pounds) ³
K086 K086 10 Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 100 K087 K088 K088 100 Decanter tank tar sludge from coking operations. K088 10 K080 K088 10 Spent potliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K098 1 Untreated vastewater from the distillation of aniline-based compou					
K086 K086 10 Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 100 K087 K088 K088 100 Decanter tank tar sludge from coking operations. K088 10 K080 K088 10 Spent potliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K098 1 Untreated vastewater from the distillation of aniline-based compou	Distillation or fractionation column bottoms from the p	roduction of ch	lorobenzenes.		
Solvent washes and sludges, caustic washes and sludges, or water washes and sludges from cleaning tubs and equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 IO0 Decanter tank tar sludge from coking operations. K088 IO K080 K081 IO0 Spent polliners from primary aluminum reduction. K090 IO Emission control dust or sludge from ferrochromiumsilicon production. K091 IO Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 IOO K096 K095 IOO IOO Distillation bottoms from the production of 1,1,1-trichloroethane. K096 IOO K096 K097 I Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 I Untreated process wastewater from the production of 2,4-D. K100 10 IO Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 K102<				K086	10
equipment used in the formulation of ink from pigments, driers, soaps, and stabilizers containing chromium and lead. K087 100 Decanter tank tar sludge from coking operations. K088 10 Spent potliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromiumsilicon production. K091 10 Emission control dust or sludge from ferrochromium production. K093 K091 10 Emission control dust or sludge from ferrochromium production. K093 K094 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 10 Untreated process wastewater from the production of toxaphene. K099 10 Untreated usatewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K103 K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production.		s. or water was	hes and sludges from		
Decanter tank tar sludge from coking operations. K088 10 Spent potliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromiumsilicon production. K091 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the chlordane chlorinator in the production of chlordane. K097 1 Vacuum stripper discharge from the production of toxaphene. K098 1 Untreated process wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Litteate the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic orogano-arsenic compounds. K102	equipment used in the formulation of ink from pigment				
K088 10 Spent potliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 10 K093 K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the production of 1,1,1-trichloroethane. K096 100 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K097 1 Vacuum stripper discharge from the production of 2,4-D. K100 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds. K102 1 Residue from tare second carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102	K087			K087	100
Spent potliners from primary aluminum reduction. K090 10 Emission control dust or sludge from ferrochromiumsilicon production. K091 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 No95 K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Heavy ends from the production of 1,1,1-trichloroethane. K096 100 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K097 1 Vacuum stripper discharge from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic orogeno-arsenic compounds. K103 100 Porocess residues from the distillation of aniline	Decanter tank tar sludge from coking operations.	·			
K090 K090 10 Emission control dust or sludge from ferrochromiumsilicon production. K091 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinar	K088			K088	10
Emission control dust or sludge from ferrochromiumsilicon production. K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds. K102 1 K102 I K101 1 Distillation tar residues from the distillation of aniline-based compounds. K102 1 <t< td=""><td>Spent potliners from primary aluminum reduction.</td><td>·</td><td></td><td></td><td></td></t<>	Spent potliners from primary aluminum reduction.	·			
K091 K091 10 Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bittoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 K096 100 K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K097 1 Vacuum stripper discharge from the production of toxaphene. K098 1 Untreated process wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Pharmaceuticals from aniline extraction from the production of aniline. K103 100 Process residues from aniline extraction from the production of aniline. K103 100	K090			K090	10
Emission control dust or sludge from ferrochromium production. K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Process residues from aniline extracti	Emission control dust or sludge from ferrochromiumsil	icon production	1.		
K093 K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Mo96 K096 100 Heavy ends from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K103 I I I I I I Porcess residues from aniline extraction from the production of aniline. K103 100 I I	K091			K091	10
K093 K093 5,000 Distillation light ends from the production of phthalic anhydride from ortho-xylene. K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K095 100 Mo96 K096 100 Heavy ends from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K103 I I I I I I Porcess residues from aniline extraction from the production of aniline. K103 100 I I	Emission control dust or sludge from ferrochromium pr	oduction.			
K094 K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10				K093	5,000
K094 K094 5,000 Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of 2,4-D. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10	Distillation light ends from the production of phthalic a	nhydride from	ortho-xylene.		,
Distillation bottoms from the production of phthalic anhydride from ortho-xylene. K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production.				K094	5,000
K095 100 Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Process residues from aniline extraction from the production of aniline. K104 10		hydride from or	rtho-xylene.		,
Distillation bottoms from the production of 1,1,1-trichloroethane. K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production.				K095	100
K096 K096 100 Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10		oroethane.			
Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane. K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Process residues from aniline extraction from the production of aniline. K104 10	• • •			K096	100
K097 K097 1 Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 1 Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from aniline extraction from the production of aniline. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10		uction of 1.1.1-	trichloroethane.		
Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane. K098 K098 I Untreated process wastewater from the production of toxaphene. K099 10 K099 K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K102 K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10	· · · · ·			K097	1
K098 K098 1 Untreated process wastewater from the production of toxaphene. K099 10 K099 K099 10 Untreated wastewater from the production of 2,4-D. K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10		tor in the produ	uction of chlordane.		-
Untreated process wastewater from the production of toxaphene. K099 10 Untreated wastewater from the production of 2,4-D. K100 K100 10 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 K103 100 Process residues from aniline extraction from the production of aniline. K104 K104 10		F		K098	1
K099K09910Untreated wastewater from the production of 2,4-D.K10010K100K10010Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting.K1011Line Line Line Line Line Line Line Line		oxaphene		11070	-
Untreated wastewater from the production of 2,4-D. K100 K100 Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 K101 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 K102 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 K103 Process residues from aniline extraction from the production of aniline. K104 K104				K099	10
K100K10010Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting.K1011K101K1011Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.K1021Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.K103100Process residues from aniline extraction from the production of aniline.K103100Process residues from aniline extraction from the production of aniline.K10410Combined wastewater streams generated from nitrobenzene/aniline production.K10410				11077	10
Waste leaching solution from acid leaching of emission control dust/sludge from secondary lead smelting. K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic compounds. K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10				K100	10
K101 K101 1 Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K102 K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K103 K103 100 Process residues from aniline extraction from the production of aniline. K103 100 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10		control dust/sl	udge from secondary		
Distillation tar residues from the distillation of aniline-based compounds in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K102 K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K103 K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. K104 10					ĩ
pharmaceuticals from arsenic or organo-arsenic compounds. K102 1 K102 K102 1 Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds. K103 100 K103 K103 100 Process residues from aniline extraction from the production of aniline. K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. Image: Comparison of Compar		pased compoun	ds in the production o		
K102K1021Residue from the use of activated carbon for decolorization in the production of veterinary pharmaceuticals from arsenic or organo-arsenic compounds.K103100K103K103100Process residues from aniline extraction from the production of aniline.K10410K104Combined wastewater streams generated from nitrobenzene/aniline production.K10410					
arsenic or organo-arsenic compounds. K103 100 K103 Process residues from aniline extraction from the production of aniline. K104 10 K104 K104 10 Combined wastewater streams generated from nitrobenzene/aniline production. Image: Comparison of Comparison				K102	1
K103K103100Process residues from aniline extraction from the production of aniline.K103100K104K10410Combined wastewater streams generated from nitrobenzene/aniline production.K10410		tion in the proc	luction of veterinary p	harmaceutic	als from
K104 K104 10 Combined wastewater streams generated from nitrobenzene/aniline production.				K103	100
K104 K104 10 Combined wastewater streams generated from nitrobenzene/aniline production.	Process residues from aniline extraction from the produ	ction of aniline	e.		
Combined wastewater streams generated from nitrobenzene/aniline production.				K104	10
		zene/aniline pr	oduction.		1
K105 K105 10		r		K105	10
Separated aqueous stream from the reactor product washing step in the production of chlorobenzenes.		hing step in the	e production of chloro		1

Table AP1.74. List of Hazardous Waste/Substance/Materials (All notes appear at the end of the table) Hazardous Waste/Substance/Material CAS No. 1 Threshold Planning Wastewater treatment sludge from the mercury cell process in chlorine production. K106 Image: Substance/Material CAS No. 1 Threshold Planning Wastewater treatment sludge from the mercury cell process in chlorine production. K107 K108 K108 K108 K108 K108 K108 K108 K108 K109 10 Substance/Material K109 10 K109 10 Column bottoms from product separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 K100 K110 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 K110 K110 K110 10 Condensed column overheads from intermediate					
Hazardous Waste/Substance/Material CAS No. 1 Threshold Planning Quantity (Pounds) USEPA (FW No. 2 RQ (Pounds) 3 K106 Image: Substance/Material K106 Image: Substance/Material RQ Image: Substance/Material RQ Image: Substance/Material RQ Image: Substance/Material RQ Image: Substance/Material Image: Substance/Material RQ Image: Substance/Material Image: Substance/Material <td></td> <td></td> <td></td> <td>ials</td> <td></td>				ials	
Hazardous Waste/Substance/Material CAS No. ¹ Quantity (Pounds) HW No. ² (Pounds) ³ K106 K106 1 Wastewater treatment sludge from the mercury cell process in chlorine production. K107 10 Column bottoms from product separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazines. K108 10 Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 10 Spent filter cartridges from product purification from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 K112 K111 10 10 10 Condensed column overheads from intermediate separation of toluene. K111 10 10 K112 K111 10 10 10 Froduct vashwaters from the production of dinitrotoluene via nitration of toluenediamine via hydrogenation of dinitrotoluene. K112 10 Reacton by-product water from the purification of toluenediamine in the production of tolue	(All notes appear a				
Wastewater treatment sludge from the mercury cell process in chlorine production. K107 10 Column bottoms from product separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazines. K108 10 Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 10 Spent filter cartridges from product purification from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluenediamine via hydrogenation of dinitrotoluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10	Hazardous Waste/Substance/Material	CAS No. 1			
K107 10 Column bottoms from product separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazines. K108 10 Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 10 Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 10 Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of toluene. K111 10 Condensed liquid light ends from the production of dinitrotoluene via hydrogenation of dimitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dimitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dimitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinintrotoluene. K114	K106			K106	1
Column bottoms from product separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazines. 10 K108 10 Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. 1 K109 1 K109 10 Spent filter cartridges from product purification from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 K110 K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluened. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the	Wastewater treatment sludge from the mercury cell proce	ess in chlorine	e production.		
Column bottoms from product separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazines. 10 K108 10 Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. 1 K109 1 K109 10 Spent filter cartridges from product purification from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 K110 K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluened. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the	K107			K107	10
acid hydrazines. K108 10 K108 K108 10 Condensed column overheads from product separation and condensed reactor vent gases from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 10 Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from the production of dinitrotoluene via nitration of toluenediamine via hydrogenation of dinitrotoluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10		ction of 1.1-d	imethylhydrazine (UI	OMH) from	carboxvlic
Condensed column overheads from product separation and condensed reactor vent gases from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 10 Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 K110 K110 K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 K111 K111 10 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 K111 K111 10 10 10 Product washwaters from the production of dinitrotoluene via nitration of toluenediamine via hydrogenation of dinitrotoluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 K116 <	· · · ·				
dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K109 K109 10 Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of toluenet. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dimitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dimitrotoluene. K114 10 K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dimitrotoluene. K114 10 K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of toluenediamine. K116 10 Organic condensate from the solvent recovery column in the production of toluene diasocyanate via phosgenation of toluenediamine. K117 1 K116	K108			K108	10
K109 K109 10 Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluened. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluene diasocyanate via phosegenation of toluenediamine. K115 10 Heavy ends from the purification of toluenediamine in the production of toluene disocyanate via phosegenation of toluenediamine. K116			reactor vent gases fro	m the produ	ction of 1,1-
Spent filter cartridges from product purification from the production of 1.1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluened. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 K115 K116 10 Organic condensate from the solvent recovery column in the production of toluenediamine via hydrogenation of toluenediamine. K116 10 Organic condensate from the solvent recovery column in the production of toluene discoyanate via phosgenation of toluenediamine. K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene dibromide. K118 10 Organic co	•••			K100	10
carboxylic acid hydrazides. K110 10 Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 K111 K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 K117 1 Wastewater from the solvent recovery column in the production of toluenediamine via hydrogenation of ethylene disromide. K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 10 Organic condensate from the reaction of ethylene dibromide. K118 10 Process wastewater (including supernates, filtrates, and washwaters) from the production		production of	f 1 1 dimothulhudrozi		-
Condensed column overheads from intermediate separation from the production of 1,1-dimethylhydrazine (UDMH) from carboxylic acid hydrazides. K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 K114 K115 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 Organic condensate from the solvent recovery column in the production of toluene discoyanate via phosgenation of toluenediamine. K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 <		production o			IIOIII
from carboxylic acid hydrazides. K111 K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10				-	
K111 10 Product washwaters from the production of dinitrotoluene via nitration of toluene. K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the produ	1	on from the p	roduction of 1,1-dime	thylhydraziu	ne (UDMH)
K112 K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 I Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. <td>· · · · ·</td> <td></td> <td></td> <td>K111</td> <td>10</td>	· · · · ·			K111	10
K112 K112 10 Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 I Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. <td>Product washwaters from the production of dinitrotoluen</td> <td>e via nitratior</td> <td>of toluene.</td> <td></td> <td>1</td>	Product washwaters from the production of dinitrotoluen	e via nitratior	of toluene.		1
Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene. K113 10 K113 K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 K114 K114 10 K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 K116 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 K118 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of et				K112	10
K113 K113 10 Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 K114 K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 K115 K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 K116 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 K118 1 10 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylene- bisdithiocarbamic acid	Reaction by-product water from the drying column in the	production c	f toluenediamine via		
Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K114 10 K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 K116 K116 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts. K125 10				K113	10
hydrogenation of dinitrotoluene. K114 10 K114 10 Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K115 10 K115 K115 10 Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 K116 10 Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K118 K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts. K126 10		nediamine ir	the production of tol		
K11410Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.K11510Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.K11610K1160K11610Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine.K1171Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene.K1181Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12610			the production of ton		via
Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.K11510K115IK115IHeavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.K11610Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine.K1171K117IK1171Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene.K1181Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylene bisdithiocarbamic acid and its salts.K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12510K126K12610K12610				K114	10
K115I0Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.K11610K116K11610Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine.K1171K117K1171Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene.K1181Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12510K126K12610K12610	-	oduction of t	oluenediamine via hyd	drogenation	
Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene. K116 10 K116 0 <				K115	10
K116K11610Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine.K1171K117Mastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene.K1181K118K11811Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12610	Heavy ends from the purification of toluenediamine in th	e production	of toluenediamine via	_	
Organic condensate from the solvent recovery column in the production of toluene disocyanate via phosgenation of toluenediamine. K117 1 K117 K117 1 Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene. K118 1 K118 K118 1 Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide. K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts. K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts. K125 10 K126 10 K126 10				K116	10
K117K1171Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene.K1181K118K1181Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K12310K123K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12610	Organic condensate from the solvent recovery column in	the production	on of toluene disocyan		
Wastewater from the reaction vent gas scrubber in the production of ethylene bromide via bromination of ethene.K118K1181Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K12310K123K123K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12610				K117	1
K118K118Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K123K123Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K124Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K125Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K126K126		duction of et	hvlene bromide via b		
Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide.K123K12310Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts.K12410K124K124K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K12510Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K12610					
K123 K123 10 Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts. K124 10 K124 K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts. K126 10		omide in the r	roduction of ethylene		1
Process wastewater (including supernates, filtrates, and washwaters) from the production of ethylenebisdithiocarbamic acid and its salts. K124 K124 10 Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts. K125 10 K126 K126 10 10					10
ethylenebisdithiocarbamic acid and its salts.K124K12410Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts.K125K125K125Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K126K126K12610		(K123	10
Reactor vent scrubber water from the production of ethylene- bisdithiocarbamic acid and its salts. K125 K125 K125 10 Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts. K126 10		vashwaters) fi	rom the production of		
K125K125Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K126K126					10
Filtration, evaporation, and centrifugation solids from the production of ethylenebisdithiocarbamic acid and its salts.K126K126	Reactor vent scrubber water from the production of ethyl	ene- bisdithic	carbamic acid and its	salts.	
K126 K126 10	K125			K125	10
	Filtration, evaporation, and centrifugation solids from the	production of	of ethylenebisdithiocar	bamic acid	and its salts.
Baghouse dust and floor sweepings in milling and packaging operations from the production or formulation of	K126			K126	10
	Baghouse dust and floor sweepings in milling and package	ging operation	ns from the production	or formulat	tion of

Table AP1.T4. List of Hazardo (All notes appear at			ials	
Hazardous Waste/Substance/Material	CAS No. 1	Threshold Planning Quantity (Pounds)	USEPA HW No. ²	RQ (Pounds) ³
ethylene-bisdithiocarbamic acid and its salts.				
K131			K131	100
Wastewater from the reactor and spent sulfuric acid from t	he acid drve	r in the production of		
K132			K132	1,000
Spent absorbent and wastewater solids from the production	n of methyl b	romide	11102	1,000
K136		formae.	K136	1
	n the nreduce	tion of otherland dihra		_
Still bottoms from the purification of ethylene dibromide i ethene.	n the produc			
K141			K141	1
Process residues from the recovery of coal tar, including b production of coke or coal or the recovery of coke by-proc K087 (decanter tank tar sludge from coking operations).			ting does no	
K142			K142	1
Tar storage tank residues from the production of coke or fi	om the recov	very of coke by-produ	acts produce	d from coal.
K143			K143	1
Process residues from the recovery of light oil, including, wash oil recovery units from the recovery of coke by-prod			in stills, dec	canters, and
K144			K144	1
Wastewater treatment sludges from light oil refining, inclusump sludges from the recovery of coke by-products products p			ing or contar	nination
K145			K145	1
Residues from naphthalene collection and recovery operat from coal.	ions from the	e recovery of coke by		_
K147			K147	1
Tar storage tank residues from coal tar refining.				
K148			K148	1
Residues from coal tar distillation, including, but not limit	ed to still bo	ttoms	11140	1
K149	cu to, still bo		K149	10
Distillation bottoms from the production of alpha- (or met benzoyl chlorides, and compounds with mixtures of these bottoms from the distillation of benzyl chloride.]			lorinated tol	uenes,
K150			K150	10
Organic residuals, excluding spent carbon adsorbent, from processes associated with the production of alpha- (or met benzoyl chlorides, and compounds with mixtures of these	hyl-) chlorin	ated toluenes, ring-ch		
K151			K151	10
Wastewater treatment sludges, excluding neutralization an wastewaters from the production of alpha- (or methyl-) ch chlorides, and compounds with mixtures of these function	lorinated tolu			
K157			K157	++
Wastewaters (including scrubber waters, condenser waters of carbamates and carbamoyl oximes. (This listing does n wastewaters.)				
K158			K158	++
Bag house dusts and filter/separation solids from the produ	uction of carl	pamates and carbamo	yl oximes.	

Table AP1.T4. List of Hazardous Waste/Substances/Materials(All notes appear at the end of the table)							
Hazardous Waste/Substance/Material CAS No. ¹ Threshold Planning Quantity (Pounds) USEPA HW No. ² RQ (Pounds)							
K159 K159 ++							
Organics from the treatment of thiocarbamate wastes.							
K160 K160 ++							
Solids (including filter wastes, separation solids, and spent catalysts) from the production of thio-carbamates and solids from the treatment of thiocarbamate wastes.							
K161 K161 ++							
Purification solids (including filtration, evaporation, and centrifugation solids), bag house dust, and floor sweepings from the production of dithiocarbamate acids and their salts. (This listing does not include K125 or K126.)							

Notes:

1. Chemical Abstract Service (CAS) Registry Number.

2. USEPA Hazardous Waste Number.

3. Reportable quantity release that requires notification. (see Chapter 18, "Spill Prevention and Response Planning"). 4. Includes mono- and di-ethers of ethylene glycol, diethylene glycol, and triethylene glycol R-(OCH2CH2)n-OR'. Where: n = 1, 2, or 3; R = alkyl C7 or less; or R = phenyl or alkyl substituted phenyl; R' = H or alkyl C7 or less; or OR'consisting of carboxylic acid ester, sulfate, phosphate, nitrate, or sulfonate.

++ No reporting of releases of this hazardous substance is required if the diameter of the pieces of the solid metal released is equal to or exceeds 100 micrometers (0.004 inches).

+++ The reportable quantity (RQ) for asbestos is limited to friable forms only.

Table AP1.T5: Classification of Specially Controlled Wastes for Purposes of Ultimate Disposal in Japan (not to be used for HW management within a DoD installation)

	Classification		Waste Items	JEGS HW Number
	Components PCB's	s containing	PCB's contained in parts of air conditioners, TV's and microwaves	
Specially Controlled	Dust		Dust collected by a dust collection facility at a waste disposal facility	
General Waste	Dioxin cont	ained material	Dust, cinder dust, and sludge, ≥3ng/g of dioxin from a dioxin-regulated waste incineration facility	
	Infectious g	eneral waste	Infectious general wastes suspected of containing infectious pathogens from a medical institution	
	Waste Oil		Volatile oils, gasoline, kerosene type, and diesel type fuels (except nonflammable tar pitch) with a flashpoint <70° C (158° F)	J001
	Waste Acid		pH ≤2.0	J002
	Waste Alka	li	pH≥12.5	J002
	Infectious industrial waste		Infectious industrial wastes suspected of containing infectious pathogens from a medical institution	
		Waste PCB	Waste PCB and waste PCB contaminated oil	
		PCB contaminated substances	PCB contaminated sludge, paper trash, waste woods, fibers, plastics, metals, waste ceramic, debris	
Specially Controlled		Treated Material for PCB	Waste PCB oil and PCB contaminated substances that have been treated to reduce PCB concentrations	
Industrial Waste	Specified	Slag	Slag containing heavy metals above regulatory levels provided in Table AP1.T6	
	Specified Hazardous Industrial Waste Dust, Cinder dust Waste Oil Waste Sludge, Acid, Alkali		Waste asbestos that are suspected to scatter in building materials subject for demolition or facilities that generate asbestos dust	J029
			Dust and cinder dust containing heavy metals and dioxin which are above regulatory levels provided in Table AP1.T6	
			Waste oil (solvent) containing chlorinated organic compounds which exceed the criteria in Table AP1.T6.	
			Waste sludge, waste acid and waste alkali containing heavy metals, chlorinated organic compounds, PCB, pesticide, selenium and dioxin which are above regulatory levels in Table AP1.T6	

Table AP1.T6. Specially Controlled Industrial Waste Criteria to be used for Ultimate Disposal in Japan (not to be used for HW management within an installation unless specifically directed to the table by Table AP1.T1 or Table AP1.T2)

	Waste type at time of generation			Cinder Dust, Dust, Slag Waste Oil (Solvent Only)			Waste Sludge, Acid, Alkali				
	Waste type at time of dispo	sal	CinderIreatedTreatedWasteTreatedTreatedDust,(wasteMaterialMaterialMaterialMaterialMaterialDust,(waste(exceptMaterialSludgeMaterialWaste Acid,MSlagwaste acid,waste acid,waste alkali,waste alkali,waste alkali,waste alkali,					Waste Treated Material (waste alkali, waste acid)			
JEGS HW Number	Contaminant	CAS No.				Co	ncentration Leve	el (mg/L)			
J004	Alkyl Mercury	_	ND	ND	ND	-	-	ND	ND	ND	ND
J005	Mercury	7439-97-6	0.005	0.05	0.005	-	-	0.005	0.005	0.05	0.05
J006	Cadmium	7440-43-9	0.3	1.0	0.3	-	-	0.3	0.3	1.0	1.0
J007	Lead	7439-92-1	0.3	1.0	0.3	-	-	0.3	0.3	1.0	1.0
J008	Organic Phosphorus	-	-	_	-	_	-	1.0	1.0	1.0	1.0
J009	Chromium Hexavalent	7440-47-3	1.5	5.0	1.5	_	-	1.5	1.5	5.0	5.0
J010	Arsenic	7440-38-2	0.3	1.0	0.3	-	-	0.3	0.3	1.0	1.0
J011	Total Cyanide	-	-	-	-	-	-	1.0	1.0	1.0	1.0
J012	РСВ	7440-22-4	-	-	-	Waste Oil:	0.5 mg/Kg)	0.003	0.003	0.03	0.03
J013	Trichloroethylene	79-01-6	-	-	-	3.0	0.3	0.3	0.3	3.0	3.0
J014	Tetrachloroethylene	127-18-4	-	-	-	1.0	0.1	0.1	0.1	1.0	1.0
J015	Dichloromethane	75-09-2	-	-	-	2.0	0.2	0.2	0.2	2.0	2.0
J016	Carbon Tetrachloride	56-23-5	-	-	-	0.2	0.02	0.02	0.02	0.2	0.2
J017	1,2-Dichloroethane	107-06-2	-	-	-	0.4	0.04	0.04	0.04	0.4	0.4
J018	1,1-Dichloroethylene	75-35-4	-	-	-	10.0	1.0	1.0	1.0	10.0	10.0
J019	cis-1,2-Dichloroethylene	156-59-2	-	-	-	4.0	0.4	0.4	0.4	4.0	4.0
J020	1,1,1-Trichloroethane	71-55-6	-	-	-	30.0	3.0	3.0	3.0	30.0	30.0
J021	1,1,2-Trichloroethane	79-00-5	-	-	-	0.6	0.06	0.06	0.06	0.6	0.6
J022	1,3-Dichloropropene	542-75-6	-	-	-	0.2	0.02	0.02	0.02	0.2	0.2
J023	Thiuram	137-26-8	-	-	-	-	-	0.06	0.06	0.6	0.6
J024	Simazine	122-34-9	-	-	-	-	-	0.03	0.03	0.3	0.3
J025	Thiobencarb	28249-77-6	-	-	-	-	-	0.2	0.2	2.0	2.0
J026	Benzene	71-43-2	-	-	-	1.0	0.1	0.1	0.1	1.0	1.0
J027	Selenium & its Compounds	7782-49-2	0.3	1.0	0.3	-	-	0.3	0.3	1.0	1.0
J028	Dioxins (TEQ)	1746-01-6	3 ng/g ¹	100 pg/L ¹	3 ng/g ¹	-	-	3 ng/g	3 ng/g	100 pg/L	100 pg/L
J030	1,4-Dioxane	123-91-1	0.5 ²	5.0 ²	0.5 ²	5.0	0.5	0.5	0.5	5.0	5.0

Notes:

1. Except for slag and its treated material.

2. Apply to dust and its treated material.

Table AP1.T7. Contaminated Soil Disposal Criteria

Soil Contaminant	Total Soil Concentration Standard (mg/kg)	Soil Primary Leachate Standard (mg/L)
Carbon Tetrachloride		0.002
1,2-Dichloroethane		0.004
1,1-Dichloroethylene		0.02
cis-1,2 Dichloroethylene		0.04
1,3-Dichloropropene		0.002
Dichloromethane		0.02
Tetrachloroethylene		0.01
1,1,1-Trichloroethane		1.0
1,1,2-Trichloroethane		0.006
Trichloroethylene		0.03
Benzene		0.01
Cadmium, and its compounds	150	0.01
Hexavalent Chromium compounds	250	0.05
Cyanide compounds	50 (as isolated cyanides)	ND
Total Mercury, and its compounds	15	0.0005
Alkyl Mercury	15	ND
Selenium, and its compounds	150	0.01
Lead, and its compounds	150	0.01
Arsenic, and its compounds	150	0.01
Fluorine, and its compounds	4000	0.8
Boron, and its compounds	4000	1.0
Simazine		0.003
Thiuram		0.006
Thiobencarb		0.02
PCB		ND
Organic phosphorus compounds		ND

IMPORTANT: These criteria are NOT to be used as Environmental Quality Standards for Soil

AP2. <u>APPENDIX 2</u>

DETERMINATION OF WORST CASE DISCHARGE PLANNING VOLUME

AP2.1. This Appendix provides criteria to determine, on an installation-specific basis, the extent of a worst-case discharge (WCD).

AP2.2. This Appendix provides criteria to determine the volume of oil or hazardous substance to be used in planning for a WCD. Installations should calculate both WCD volumes that apply to the installation's design and operation and use the larger volume as the WCD planning volume.

AP2.3. For installations transferring oil to and from vessels with tank capacities of 10,500 gallons (250 barrels) or more, the WCD planning volume is calculated as follows:

AP2.3.1. Where applicable, the loss of the entire capacity of all in-line and break out tank(s) needed for the continuous operation of the pipelines used for the purposes of handling or transporting oil, in bulk, to or from a vessel regardless of the presence of secondary containment; plus

AP2.3.2. The discharge from all piping carrying oil between the marine transfer manifold and the valve or manifold adjacent to the POL storage container. The discharge from each pipe is calculated as follows: The maximum time to discover the release from the pipe in hours, plus the maximum time to shut down flow from the pipe in hours (based on historic discharge data or the best estimate in the absence of historic discharge data for the installation) multiplied by the maximum flow rate expressed in gallons per hour (based on the maximum relief valve setting or maximum system pressure when relief valves are not provided) plus the total line drainage volume expressed in gallons for the pipe between the marine transfer manifold and the valve or manifold adjacent to the POL storage container.

AP2.4. For installations with POL Storage Containers:

AP2.4.1. <u>Single POL Storage Container Facilities</u>. For facilities containing only one aboveground oil or hazardous substance storage container, the WCD planning volume equals the capacity of the oil or hazardous substance storage container. If adequate secondary containment (sufficiently large to contain the capacity of the above ground oil or hazardous substance storage container plus sufficient freeboard to allow for precipitation) exists for the oil storage container, multiply the capacity of the container by 0.8.

AP2.4.2. Multiple POL Storage Container Facilities

AP2.4.2.1. <u>Facilities having no secondary containment</u>. If none of the above ground storage containers at the facility have adequate secondary containment, the worst case planning volume equals the total above ground oil and hazardous substance storage capacity at the facility.

AP2.4.2.2. <u>Facilities having complete secondary containment</u>. If every above ground storage container at the facility has adequate secondary containment, the WCD planning volume

equals the capacity of the largest single above ground oil or hazardous substance storage container.

AP2.4.2.3. <u>Facilities having partial secondary containment</u>. If some, but not all above ground storage containers at the facility have adequate secondary containment, the WCD planning volume equals the sum of:

AP2.4.2.3.1. The total capacity of the above ground oil and hazardous substance storage container that lacks adequate secondary containment; plus

AP2.4.2.3.2. The capacity of the largest single above ground oil or hazardous substance storage container that has adequate secondary containment.

AP2.4.3. For purposes of this Appendix, the term "adequate secondary containment" means an impervious containment system such as a dike, berm, containment curb, drainage system or other device that will prevent the escape of spilled material into the surrounding soil.

CRITICAL: DO NOT INSERT ANYTHING HERE, AND DO NOT DELETE THIS LINE!!!